594 resultados para NANOSCIENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallization of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-y)(Y(2)O(3))(y)} (0.1 <= y <= 0.25) doped with different levels of ytterbium oxide has been investigated by X-ray powder diffraction, differential thermal analysis, and various solid-state NMR techniques. The homogeneous glasses undergo major phase segregation processes resulting in crystalline YBO(3), crystalline YAI(3)(BO(3))(4), and residual glassy B(2)O(3) as the major products. This process can be analyzed in a quantitative fashion by solid-state (11)B, (27)Al, and (89)Y NMR spectroscopies as well as (11)B{(27)Al} rotational echo double resonance (REDOR) experiments. The Yb dopants end up in both of the crystalline components, producing increased line widths of the corresponding (11)B, (27)Al, and (89)Y NMR resonances that depend linearly on the Yb/Y substitution ratio. A preliminary analysis of the composition dependence suggests that the Yb(3+) dopant is not perfectly equipartitioned between both crystalline phases, suggesting a moderate preference of Yb to substitute in the crystalline YBO(3) component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unveiling the mechanisms of energy relaxation in biomolecules is key to our understanding of protein stability, allostery, intramolecular signaling, and long-lasting quantum coherence phenomena at ambient temperatures. Yet, the relationship between the pathways of energy transfer and the functional role of the residues involved remains largely unknown. Here, we develop a simulation method of mapping out residues that are highly efficient in relaxing an initially localized excess vibrational energy and perform site-directed mutagenesis functional assays to assess the relevance of these residues to protein function. We use the ligand binding domains of thyroid hormone receptor (TR) subtypes as a test case and find that conserved arginines, which are critical to TR transactivation function, are the most effective heat diffusers across the protein structure. These results suggest a hitherto unsuspected connection between a residue`s ability to mediate intramolecular vibrational energy redistribution and its functional relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the development of amperometric sensors based on poly(allylamine hydrochloride) (PAH) and lutetium bisphthalocyanine (LuPc(2)) films assembled using the Layer-by-Layer (LbL) technique. The films have been used as modified electrodes for catechol quantification. Electrochemical measurements have been employed to investigate the catalytic properties of the LuPc(2) immobilized in the LbL films. By chronoamperometry, the sensors present excellent sensitivity (20 nA mu M(-1)) in a wide linear range (R(2) = 0.994) up to 900 mu M and limit of detection (s/n = 3) of 37.5 x 10(-8) M for catechol. The sensors have good reproducibility and can be used at least for ten times. The work potential is +0.3 V vs. saturated calomel electrode (SCE). In voltammetry measurements, the calibration curve shows a good linearity (R(2) = 0.992) in the range of catechol up to 500 mu M with a sensitivity of 90 nA mu M(-1) and LD of 8 mu M. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how a circuit analysis, used widely in electrical engineering, finds application to problems of light wave injection and transport in subwavelength structures in the optical frequency range. Lumped circuit and transmission-line analysis may prove helpful in the design of plasmonic devices with standard, functional properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic supported bilayers on latex are useful to isolate and immobilize oppositely charged proteins as a monomolecular layer over a range of low protein concentrations and particle number densities. Cholera toxin (CT) from Vibrio cholerae, an 87 kDa AB(5) hexameric protein and bovine serum albumin (BSA) self-assembled on dioctadecyldimethylammonium bromide (DODAB) supported bilayers with high affinity yielding highly organized and monodisperse particulates at 5 x 10(9) particles/mL, over a range of low protein concentrations (0-0.025 mg/mL BSA or CT). Protein association onto the bilayer-covered polystyrene sulfate (PSS) was determined from adsorption isotherms, dynamic light scattering for size distributions and zeta-potential analysis revealing a monomolecular, thin and highly organized protein layer surrounding each particle with potential for biospecific recognition such as antigen-antibody, receptor-ligand, hybridization of oligonucleotide sequences, all of them important in immunodiagnosis, selective biomolecular chromatographic separations, microarrays design and others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, a new approach for the determination of the partition coefficient in different interfaces based on the density function theory is proposed. Our results for log P(ow) considering a n-octanol/water interface for a large super cell for acetone -0.30 (-0.24) and methane 0.95 (0.78) are comparable with the experimental data given in parenthesis. We believe that these differences are mainly related to the absence of van der Walls interactions and the limited number of molecules considered in the super cell. The numerical deviations are smaller than that observed for interpolation based tools. As the proposed model is parameter free, it is not limited to the n-octanol/water interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the covalent grafting of 3,4,9,10-perylenediimides (PDI), which are fluorescent dyes with very interesting optical properties, onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. The mesoporous materials were first treated with 3-aminopropyltriethoxysilane (APTES) in anhydrous toluene, generating amine-containing surfaces. The amine-containing materials were then reacted with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCA), generating surface-grafted PDI. Infrared spectra of the materials showed that the reaction with amino groups took place at both anhydride ends of the PTCA molecule, resulting in surface attached diimides. No sign of unreacted anhydride groups were found. The new materials, designated as MCMN2PDI and SBAN(2)PDI, presented absorption and emission spectra corresponding to weakly coupled PDI chromophores, in contrast to the strongly coupled rings usually found in solid PDI samples. The materials showed a red fluorescence, which could be observed by the naked eye under UV irradiation or with a fluorescence microscope. The PDI-modified mesoporous materials showed electrical conductivity when pressed into a pellet. The results presented here show that the new materials are potentially useful in the design of nanowires. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid films from poly (methylmethacrylate) (PMMA) and dioctadecyldimethylammonium bromide (DODAB), cetyltrimethylammonium bromide (CTAB), or tetrapropylammonium bromide (TPAB) were characterized by determination of wettability, ellipsometry, atomic force microscopy, active compounds diffusion to water, X-ray photoelectron spectroscopy (XPS) with determination of atomic composition on the films surface, and biocidal activity against Pseudomonas aeruginosa or Staphylococcus aureus. QAC mobility in the films increased from DODAB to CTAB to TPAB. Diffusion and optimal hydrophobic hydrophilic balance imparted the highest bioactivity to CTAB. DODAB sustained immobilization at the film surface killed bacteria upon contact. TPAB ability to diffuse was useless because of its unfavorable hydrophobic hydrophilic balance for bioactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we report on the synthesis of photosensitizing nanoparticles in which the generation of different oxidizing species, i.e., singlet oxygen ((1)O(2)) or radicals, was modulated. Sol gel and surface chemistry were used to obtain nanoparticles with specific ratios of dimer to monomer species of phenothiazine photosensitizers (PSs). Due to competition between the reactions involving electron transfer within dimer species and energy transfer from monomer triplets to oxygen, the efficiency of (1)O(2) generation could be controlled. Nanoparticles with an excess of dimer have an (1)O(2) generation efficiency (S(Delta)) of 0.01 while those without dimer have a S, value of 0.4. Furthermore, we demonstrate that the PS properties of the nanoparticles are not subjected to interference from the external medium as is commonly the case for free PSs, i.e., PS ground and triplet states are not reduced by NADH and ascorbate, respectively, and singlet excited states are less suppressed by bromide. The modulated (1)O(2) generation and the PS protection from external interferences make this nanoparticle platform a promising tool to aid in performing mechanistic studies in biological systems. Also, it offers potential application in technological areas in which photo-induced processes take place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report the derivatization of mesoporous TiO(2) thin films for the preparation of H(2)O(2) amperometric sensors. The coordination of the bifunctional ligand 1,10 phenantroline, 5,6 dione on the surface Ti(IV) ions provides open coordination sites for Fe(II) cations which are the starting point for the growth of a layer of Prussian blue polymer. The porous structure of the mesoporous TiO(2) allows the growth, ion by ion of the coordination polymer. Up to four layer of Prussian blue can be deposit without losing the porous structure of the film, which results in an enhanced response of these materials as H(2)O(2) sensors. These porous confined PB modified electrodes are robust sensors that exhibit good reproducibility, environmental stability and high sensitivity towards H(2)O(2) detection. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterogeneous dynamics within a time range of nanoseconds was investigated by molecular dynamics (MD) simulations of 1 -butyl-3-methylimidazolium chloride ([bmim]Cl). After identifying groups of fast and slow ions, it was shown that the separation between the location of the center of mass and the center of charge of cations, d(CMCC), is a signature of such difference in ionic mobility. The distance d(CMCC) can be used as a signature because it relaxes in the time window of the dynamical heterogeneity. The relationship between the parameter dcmcc and conformations of the side alkyl chain in [bmim] is discussed. Since the relatively slow relaxation of dcmcc is a consequence of coexisting polar and nonpolar domains in the bulk, the MD simulations reveal a subtle interplay between structural and dynamical heterogeneity in ionic liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homoss-DNA (oligodeoxyribonucleotide, ODN: polyC(20) and polyT(20)) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a Suitable optical model to account for the surface properties (roughness, thickness, and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physicochemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption oil hydrophobic CNT and oil hydrophilic silica and by Modulating the ionic Strength With and without Mg(2+). The ODN adsorption process oil CNT is driven by hydrophobic interactions only when the electrostatic repulsion is Suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (nonpolar region) toward the surface. This unfavorable orientation is partially reverse by adding Mg(2+). On the other hand, the adsorption oil silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg(2+). The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC(20) presents higher affinity for the CNT Surface due to its acid-base properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the applications of anew carbon paste electrode containing fibers of coconut (Cocus nucifera L) fruit, which are very rich in peroxidase enzymes naturally immobilized on its structure. The new sensor was applied for the amperometric quantification of benzoyl peroxide in facial creams and dermatological shampoos. The amperometric measurements were performed in 0.1 mol L(-1) phosphate buffer (pH 5.2), at 0.0 V (versus Ag/AgCl). On these conditions, benzoyl peroxide was rapidly determined in the 5.0-55 mu mol L(-1), with a detection limit of 2.5 mu mol L(-1) (s/n = 3), response time of 4.1 s (90% of the steady state) and sensitivity limit of 0.33 A mol L(-1) cm(-2). The amperometric results are in good agreement with those obtained by spectrophotometric technique, used as a standard method. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layer-by-layer (LbL) films from K(2)Nb(6)O(17)(2-) and polyallylamine (PAH) and dip-coating films of H(2)K(2)Nb(6)O(17) were prepared on a fluorine-doped tin-oxide (FTO)-coated glass. The atomic force microscopy (AFM) images were carried out for morphological characterization of both materials. The real surface area and the roughness factor were determined on the basis of pseudocapacitive processes involved in the electroreduction/electrooxidation of gold layers deposited on these films. Next, lithium ion insertion into these materials was examined by means of electrochemical and spectroelectrochemical measurements. More specifically, cyclic voltammetry and current pulses under visible light beams were used to investigate mass transport and chromogenic properties. The lithium ion diffusion coefficient (D(Li)) within the LbL matrix is significantly higher than that within the dip-coating film, ensuring high storage capacity of lithium ions in the self-assembled electrode. Contrary to the LbL film, the potentiodynamic profile of absorbance change (Delta A) as a function of time is not similar to that obtained in the case of current density for the dip-coating film. Aiming at analyzing the rate of the coloration front associated with lithium ion diffusion, a spectroelectrochemical method based on the galvanostatic intermittent titration technique (GITT) was employed so as to determine the ""optical"" diffusion coefficient (D(op)). In the dip-coating film, the method employed here revealed that the lithium ion rate is higher in diffusion pathways formed from K(2)Nb(6)O(17)(2-) sites that contribute more significantly to Delta A. Meanwhile, the presence of PAH contributed to the increased ionic mobility in diffusion pathways in the LbL film, with low contribution to the electrochromic efficiency. These results aided a better understanding of the potentiodynamic profile of the temporal change of absorbance and current density during the insertion/deinsertion of lithium ions into the electrochromic materials.