942 resultados para Molecular processes
Resumo:
Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. (C) 2014 Baishideng Publishing Group Inc. All rights reserved.
Resumo:
The gene encoding TCTP (Translationally Controlled Tumour Protein) is present in all eukaryotes and its product is involved in various cellular processes. Although well characterized in mammals, there are only few works available in the literature related to the analysis of this protein in plants. In this present work, the expression of the gene encoding TCTP was analyzed in different organs/tissues of tomato plants (Solanum lycopersicum cv. Santa Clara). A quantification performed by RT-qPCR revealed the presence of TCTP transcript in all tissues/organs analyzed, with the highest expression level found in leaves. With the exception of fruits in intermediate stage of maturation, for which a small increase on the expression was detected, there was minimal variation in the relative expression of TCTP in other organ/tissues. In parallel, the effects of the constitutive expression of TCTP were investigated using transgenic tobacco lines able to overexpress this protein at different levels (T1, T2 and T3). Seedlings of these lines, and of a non-transgenic control line, were grown in MS culture medium for 21 days. At the end of this period, the length of roots and leaves was taken and the seedlings were photographed. According to Tukey's test, the analysis of the mean root length revealed a significant difference between T1 and T3 lines when compared to the control, although the same was not observed for the T2 line. For leaves, according to Kruskal-Wallis test, there was a statistical difference between the averages of leaf growth obtained for the different lines evaluated. According to these results, we can conclude that TCTP shows an ubiquitous expression in tomato plants, with the highest expression detected in leaves, and also that its overexpression promoted a higher root and leaf development in two of three transgenic tobacco lines tested
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Infections caused by the genus Staphylococcus are of great importance for human health. Staphylococcus species are divided into coagulase-positive staphylococci, represented by S. aureus, a pathogen that can cause infections of the skin and other organs in immunocompetent patients, and coagulase-negative staphylococci (CNS) which comprise different species normally involved in infectious processes in immunocompromised patients or patients using catheters. Oxacillin has been one of the main drugs used for the treatment of staphylococcal infections; however, a large number of S. aureus and CNS isolates of nosocomial origin are resistant to this drug. Methicillin resistance is encoded by the mecA gene which is inserted in the SCCmec cassette. This cassette is a mobile genetic element consisting of five different types and several subtypes. Oxacillin-resistant strains are detected by phenotypic and genotypic methods. Epidemiologically, methicillin-resistant S. aureus strains can be divided into five large pandemic clones, called Brazilian, Hungarian, Iberian, New York/Japan and Pediatric. The objective of the present review was to discuss aspects of resistance, epidemiology, genetics and detection of oxacillin resistance in Staphylococcus spp., since these microorganisms are increasingly more frequent in Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Buteonine hawks represent one of the most diverse groups in the Accipitridae, with 58 species distributed in a variety of habitats on almost all continents. Variations in migratory behavior, remarkable dispersal capability, and unusual diversity in Central and South America make buteonine hawks an excellent model for studies in avian evolution. To evaluate the history of their global radiation, we used an integrative approach that coupled estimation of the phylogeny using a large sequence database (based on 6411 bp of mitochondrial markers and one nuclear intron from 54 species), divergence time estimates, and ancestral state reconstructions. Our findings suggest that Neotropical buteonines resulted from a long evolutionary process that began in the Miocene and extended to the Pleistocene. Colonization of the Nearctic, and eventually the Old World, occurred from South America, promoted by the evolution of seasonal movements and development of land bridges. Migratory behavior evolved several times and may have contributed not only to colonization of the Holarctic, but also derivation of insular species. In the Neotropics, diversification of the buteonines included four disjunction events across the Andes. Adaptation of monophyletic taxa to wet environments occurred more than once, and some relationships indicate an evolutionary connection among mangroves, coastal and varzea environments. On the other hand, groups occupying the same biome, forest, or open vegetation habitats are not monophyletic. Refuges or sea-level changes or a combination of both was responsible for recent speciation in Amazonian taxa. In view of the lack of concordance between phylogeny and classification, we propose numerous taxonomic changes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Context. Detections of molecular lines, mainly from H-2 and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial however. Aims. The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. Methods. A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Results. Our models show that the inclusion of an incident flux of X-rays is required to explain the molecular composition derived for planetary nebulae. We also obtain a more accurate relation for the N(CO)/N(H-2) ratio in these objects. Molecular masses obtained by previous works in the literature were then recalculated, showing that these masses can be underestimated by up to three orders of magnitude. We conclude that the problem of the missing mass in planetary nebulae can be solved by a more accurate calculation of the molecular mass.
Resumo:
This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.
Resumo:
Molecular dynamics computer simulations have been performed to identify preferred positions of the fluorescent probe PRODAN in a fully hydrated DLPC bilayer in the fluid phase. In addition to the intramolecular charge-transfer first vertical excited state, we considered different charge distributions for the electronic ground state of the PRODAN molecule by distinct atomic charge models corresponding to the probe molecule in vacuum as well as polarized in a weak and a strong dielectric solvent (cyclohexane and water). Independent on the charge distribution model of PRODAN, we observed a preferential orientation of this molecule in the bilayer with the dimethylamino group pointing toward the membrane's center and the carbonyl oxygen toward the membrane's interface. However, changing the charge distribution model of PRODAN, independent of its initial position in the equilibrated DLPC membrane, we observed different preferential positions. For the ground state representation without polarization and the in-cyclohexane polarization, the probe maintains its position close to the membrane's center. Considering the in-water polarization model, the probe approaches more of the polar headgroup region of the bilayer, with a strong structural correlation with the choline group, exposing its oxygen atom to water molecules. PRODAN's representation of the first vertical excited state with the in-water polarization also approaches the polar region of the membrane with the oxygen atom exposed to the bilayer's hydration shell. However, this model presents a stronger structural correlation with the phosphate groups than the ground state. Therefore, we conclude that the orientation of the PRODAN molecule inside the DLPC membrane is well-defined, but its position is very sensitive to the effect of the medium polarization included here by different models for the atomic charge distribution of the probe.
Resumo:
Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.
Resumo:
Abstract Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.
Resumo:
The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.
Resumo:
This thesis presents and uses the techniques of computational chemistry to explore two different processes induced in human skin by ultraviolet light. The first is the transformation of urocanic acid into a immunosuppressing agent, and the other is the enzymatic action of the 8-oxoguanine glycosylase enzyme. The photochemistry of urocanic acid is investigated by time-dependent density functional theory. Vertical absorption spectra of the molecule in different forms and environments is assigned and candidate states for the photochemistry at different wavelengths are identified. Molecular dynamics simulations of urocanic acid in gas phase and aqueous solution reveals considerable flexibility under experimental conditions, particularly for for the cis isomer where competition between intra- and inter-molecular interactions increases flexibility. A model to explain the observed gas phase photochemistry of urocanic acid is developed and it is shown that a reinterpretation in terms of a mixture between isomers significantly enhances the agreement between theory and experiment , and resolves several peculiarities in the spectrum. A model for the photochemistry in the aqueous phase of urocanic acid is then developed, in which two excited states governs the efficiency of photoisomerization. The point of entrance into a conical intersection seam is shown to explain the wavelength dependence of photoisomerization quantum yield. Finally some mechanistic aspects of the DNA repair enzyme 8-oxoguanine glycosylase is investigated with density functional theory. It is found that the critical amino acid of the active site can provide catalytic power in several different manners, and that a recent proposal involving a SN1 type of mechanism seems the most efficient one.