914 resultados para Mitral Valve
Resumo:
Recently developed technologies allow aortic valve implantation off-pump in a beating heart. In this procedure, the native, stenotic aortic valve is not removed, but simply crushed by a pressure balloon mounted on a percutaneous catheter. Removal of the native aortic cusps before valve replacement may reduce the incidence of annular or cuspal calcium embolization and late perivalvular leaks and increase implantable valve size. However, a temporary valve system in the ascending aorta may be necessary to maintain hemodynamic stability by reducing acute aortic regurgitation and left ventricular volume overload. This study evaluates the hemodynamic effects of a wire-mounted, monoleaflet, temporary valve apparatus in a mechanical cardiovascular simulator. Aortic flow, systemic pressure and left ventricular pressure were continuously monitored. An intraluminal camera obtained real-time proximal and distal images of the valve in operation. Insertion of the parachute valve in the simulator increased diastolic pressure from 7 to 38 mm Hg. Cardiac output increased from 2.08 to 4.66 L/min and regurgitant volume decreased from 65 to 23 mL. In conclusion, placement of a temporary valve in the ascending aorta may help maintain hemodynamic stability and improve off-pump aortic valve replacement.
Resumo:
AIM The aim of this study was to evaluate whether coronary artery disease (CAD) severity exerts a gradient of risk in patients with aortic stenosis (AS) undergoing transcatheter aortic valve implantation (TAVI). METHODS AND RESULTS A total of 445 patients with severe AS undergoing TAVI were included into a prospective registry between 2007 and 2012. The preoperative SYNTAX score (SS) was determined from baseline coronary angiograms. In case of revascularization prior to TAVI, residual SS (rSS) was also determined. Clinical outcomes were compared between patients without CAD (n = 158), patients with low SS (0-22, n = 207), and patients with high SS (SS >22, n = 80). The pre-specified primary endpoint was the composite of cardiovascular death, stroke, or myocardial infarction (MI). At 1 year, CAD severity was associated with higher rates of the primary endpoint (no CAD: 12.5%, low SS: 16.1%, high SS: 29.6%; P = 0.016). This was driven by differences in cardiovascular mortality (no CAD: 8.6%, low SS: 13.6%, high SS: 20.4%; P = 0.029), whereas the risk of stroke (no CAD: 5.1%, low SS: 3.3%, high SS: 6.7%; P = 0.79) and MI (no CAD: 1.5%, low SS: 1.1%, high SS: 4.0%; P = 0.54) was similar across the three groups. Patients with high SS received less complete revascularization as indicated by a higher rSS (21.2 ± 12.0 vs. 4.0 ± 4.4, P < 0.001) compared with patients with low SS. High rSS tertile (>14) was associated with higher rates of the primary endpoint at 1 year (no CAD: 12.5%, low rSS: 16.5%, high rSS: 26.3%, P = 0.043). CONCLUSIONS Severity of CAD appears to be associated with impaired clinical outcomes at 1 year after TAVI. Patients with SS >22 receive less complete revascularization and have a higher risk of cardiovascular death, stroke, or MI than patients without CAD or low SS.
Resumo:
Aims: To evaluate short-term clinical outcomes following transcatheter aortic valve implantation (TAVI) using CE-mark approved devices in Switzerland. Methods and results: The Swiss TAVI registry is a national, prospective, multicentre, monitored cohort study evaluating clinical outcomes in consecutive patients undergoing TAVI at cardiovascular centres in Switzerland. From February 2011 to March 2013, a total of 697 patients underwent TAVI for native aortic valve stenosis (98.1%), degenerative aortic bioprosthesis (1.6%) or severe aortic regurgitation (0.3%). Patients were elderly (82.4±6 years), 52% were females, and the majority highly symptomatic (73.1% NYHA III/IV). Patients with severe aortic stenosis (mean gradient 44.8±17 mmHg, aortic valve area 0.7±0.3 cm2) were either deemed inoperable or at high risk for conventional surgery (STS 8.2%±7). The transfemoral access was the most frequently used (79.1%), followed by transapical (18.1%), direct aortic (1.7%) and subclavian access (1.1%). At 30 days, rates of all-cause mortality, cerebrovascular events and myocardial infarction were 4.8%, 3.3% and 0.4%, respectively. The most frequently observed adverse events were access-related complications (11.8%), permanent pacemaker implantation (20.5%) and bleeding complications (16.6%). The Swiss TAVI registry is registered at ClinicalTrials.gov (NCT01368250). Conclusions: The Swiss TAVI registry is a national cohort study evaluating consecutive TAVI procedures in Switzerland. This first outcome report provides favourable short-term clinical outcomes in unselected TAVI patients.
Resumo:
Transcatheter aortic valve replacement (TAVR) as well as thoracic and abdominal endovascular aortic repair (TEVAR and EVAR) rely on accurate pre- and postprocedural imaging. This review article discusses the application of imaging, including preprocedural assessment and measurements as well as postprocedural imaging of complications. Furthermore, the exciting perspective of computational fluid dynamics (CFD) based on cross-sectional imaging is presented. TAVR is a minimally invasive alternative for treatment of aortic valve stenosis in patients with high age and multiple comorbidities who cannot undergo traditional open surgical repair. Given the lack of direct visualization during the procedure, pre- and peri-procedural imaging forms an essential part of the intervention. Computed tomography angiography (CTA) is the imaging modality of choice for preprocedural planning. Routine postprocedural follow-up is performed by echocardiography to confirm treatment success and detect complications. EVAR and TEVAR are minimally invasive alternatives to open surgical repair of aortic pathologies. CTA constitutes the preferred imaging modality for both preoperative planning and postoperative follow-up including detection of endoleaks. Magnetic resonance imaging is an excellent alternative to CT for postoperative follow-up, and is especially beneficial for younger patients given the lack of radiation. Ultrasound is applied in screening and postoperative follow-up of abdominal aortic aneurysms, but cross-sectional imaging is required once abnormalities are detected. Contrast-enhanced ultrasound may be as sensitive as CTA in detecting endoleaks.
Resumo:
Aims: We sought to analyse local distribution of aortic annulus and left ventricular outflow tract (LVOT) calcification in patients undergoing transcatheter aortic valve replacement (TAVR) and its impact on aortic regurgitation (AR) immediately after device placement. Methods and results: A group of 177 patients with severe aortic stenosis undergoing multislice computed tomography of the aortic root followed by TAVR were enrolled in this single-centre study. Annular and LVOT calcifications were assessed per cusp using a semi-quantitative grading system (0: none; 1 [mild]: small, non-protruding calcifications; 2 [moderate]: protruding [>1 mm] or extensive [>50% of cusp sector] calcifications; 3 [severe]: protruding and extensive calcifications). Any calcification of the annulus or LVOT was present in 107 (61%) and 63 (36%) patients, respectively. Prevalence of annulus/LVOT calcifications in the left coronary cusp was 42% and 25%, respectively, in the non-coronary cusp 28% and 13%, in the right coronary cusp 13% and 5%. AR grade 2 to 4 assessed by the method of Sellers immediately after TAVR device implantation was observed in 55 patients (31%). Multivariate regression analysis revealed that the overall annulus calcification (OR [95% CI] 1.48 [1.10-2.00]; p=0.0106), the overall LVOT calcification (1.93 [1.26-2.96]; p=0.0026), any moderate or severe LVOT calcification (5.37 [1.52-18.99]; p=0.0092), and asymmetric LVOT calcification were independent predictors of AR. Conclusions: Calcifications of the aortic annulus and LVOT are frequent in patients undergoing TAVR, and both the distribution and the severity of calcifications appear to be independent predictors of aortic regurgitation after device implantation. - See more at: http://www.pcronline.com/eurointervention/77th_issue/126/#sthash.Hzodgju5.dpuf
Resumo:
BACKGROUND Limited information exists describing the results of transcatheter aortic valve (TAV) replacement in patients with bicuspid aortic valve (BAV) disease (TAV-in-BAV). OBJECTIVES This study sought to evaluate clinical outcomes of a large cohort of patients undergoing TAV-in-BAV. METHODS We retrospectively collected baseline characteristics, procedural data, and clinical follow-up findings from 12 centers in Europe and Canada that had performed TAV-in-BAV. RESULTS A total of 139 patients underwent TAV-in-BAV with the balloon-expandable transcatheter heart valve (THV) (n = 48) or self-expandable THV (n = 91) systems. Patient mean age and Society of Thoracic Surgeons predicted risk of mortality scores were 78.0 ± 8.9 years and 4.9 ± 3.4%, respectively. BAV stenosis occurred in 65.5%, regurgitation in 0.7%, and mixed disease in 33.8% of patients. Incidence of type 0 BAV was 26.7%; type 1 BAV was 68.3%; and type 2 BAV was 5.0%. Multislice computed tomography (MSCT)-based TAV sizing was used in 63.5% of patients (77.1% balloon-expandable THV vs. 56.0% self-expandable THV, p = 0.02). Procedural mortality was 3.6%, with TAV embolization in 2.2% and conversion to surgery in 2.2%. The mean aortic gradient decreased from 48.7 ± 16.5 mm Hg to 11.4 ± 9.9 mm Hg (p < 0.0001). Post-implantation aortic regurgitation (AR) grade ≥2 occurred in 28.4% (19.6% balloon-expandable THV vs. 32.2% self-expandable THV, p = 0.11) but was prevalent in only 17.4% when MSCT-based TAV sizing was performed (16.7% balloon-expandable THV vs. 17.6% self-expandable THV, p = 0.99). MSCT sizing was associated with reduced AR on multivariate analysis (odds ratio [OR]: 0.19, 95% confidence intervals [CI]: 0.08 to 0.45; p < 0.0001). Thirty-day device safety, success, and efficacy were noted in 79.1%, 89.9%, and 84.9% of patients, respectively. One-year mortality was 17.5%. Major vascular complications were associated with increased 1-year mortality (OR: 5.66, 95% CI: 1.21 to 26.43; p = 0.03). CONCLUSIONS TAV-in-BAV is feasible with encouraging short- and intermediate-term clinical outcomes. Importantly, a high incidence of post-implantation AR is observed, which appears to be mitigated by MSCT-based TAV sizing. Given the suboptimal echocardiographic results, further study is required to evaluate long-term efficacy.
Resumo:
BACKGROUND There is great variability for the type of anaesthesia used during TAVI, with no clear consensus coming from comparative studies or guidelines. We sought to detect regional differences in the anaesthetic management of patients undergoing transcatheter aortic valve implantation (TAVI) in Europe and to evaluate the relationship between type of anaesthesia and in-hospital and 1year outcome. METHODS Between January 2011 and May 2012 the Sentinel European TAVI Pilot Registry enrolled 2807 patients treated via a transfemoral approach using either local (LA-group, 1095 patients, 39%) or general anaesthesia (GA-group, 1712 patients, 61%). RESULTS A wide variation in LA use was evident amongst the 10 participating countries. The use of LA has increased over time (from a mean of 37.5% of procedures in the first year, to 57% in last 6months, p<0.01). MI, major stroke as well as in-hospital death rate (7.0% LA vs 5.3% GA, p=0.053) had a similar incidence between groups, confirmed in multivariate regression analysis after adjusting for confounders. Dividing our population in tertiles according to the Log-EuroSCORE we found similar mortality under LA, whilst mortality was higher in the highest risk tertile under GA. Survival at 1year, compared by Kaplan-Meier analysis, was similar between groups (log-rank: p=0.1505). CONCLUSIONS Selection of anaesthesia appears to be more influenced by national practice and operator preference than patient characteristics. In the absence of an observed difference in outcomes for either approach, there is no compelling argument to suggest that operators and centres should change their anaesthetic practice.
Resumo:
Transapical transcatheter aortic valve implantation (TA-TAVI) is the recognized first choice surgical TAVI access. Expansion of this well-established treatment modality with subsequent broader patient inclusion has accelerated development of second-generation TA-TAVI devices. The Swiss ACURATE TA Symetis valve allows for excellent anatomical positioning, resulting in a very low incidence of paravalvular leaks. The self-expanding stent features an hourglass shape to wedge the native aortic valve annulus. A specially designed delivery system facilitates controlled release aided by tactile operator feedback. The ACURATE TA valve made of three native porcine non-coronary leaflets has received CE approval in September 2011. Since then, this valve is the third most frequently implanted TAVI device with over 1200 implants in Europe and South America. Results from the Symetis ACURATE TA™ Valve Implantation ('SAVI') Registry showed a procedural success rate of 98.0% and a survival rate of 93.2% at 30 days. This presentation provides technical considerations and detailed procedural aspects of device implantation.
Resumo:
This article provides an overview on procedure-related issues and uncertainties in outcomes after transcatheter aortic valve implantation (TAVI). The different access sites and how to select them in an individual patient are discussed. Also, the occurrence and potential predictors of aortic regurgitation (AR) after TAVI are addressed. The different methods to quantify AR are reviewed, and it appears that accurate and reproducible quantification is suboptimal. Complications such as prosthesis-patient mismatch and conduction abnormalities (and need for permanent pacemaker) are discussed, as well as cerebrovascular events, which emphasize the development of optimal anti-coagulative strategies. Finally, recent registries have shown the adoption of TAVI in the real world, but longer follow-up studies are needed to evaluate the outcome (but also prosthesis durability). Additionally, future studies are briefly discussed, which will address the use of TAVI in pure AR and lower-risk patients.
Resumo:
IMPORTANCE Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES Survival, stroke, and New York Heart Association functional class. RESULTS Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
AIM Transcatheter aortic valve implantation has become an alternative to surgery in higher risk patients with symptomatic aortic stenosis. The aim of the ADVANCE study was to evaluate outcomes following implantation of a self-expanding transcatheter aortic valve system in a fully monitored, multi-centre 'real-world' patient population in highly experienced centres. METHODS AND RESULTS Patients with severe aortic stenosis at a higher surgical risk in whom implantation of the CoreValve System was decided by the Heart Team were included. Endpoints were a composite of major adverse cardiovascular and cerebrovascular events (MACCE; all-cause mortality, myocardial infarction, stroke, or reintervention) and mortality at 30 days and 1 year. Endpoint-related events were independently adjudicated based on Valve Academic Research Consortium definitions. A total of 1015 patients [mean logistic EuroSCORE 19.4 ± 12.3% [median (Q1,Q3), 16.0% (10.3, 25.3%)], age 81 ± 6 years] were enrolled. Implantation of the CoreValve System led to a significant improvement in haemodynamics and an increase in the effective aortic valve orifice area. At 30 days, the MACCE rate was 8.0% (95% CI: 6.3-9.7%), all-cause mortality was 4.5% (3.2-5.8%), cardiovascular mortality was 3.4% (2.3-4.6%), and the rate of stroke was 3.0% (2.0-4.1%). The life-threatening or disabling bleeding rate was 4.0% (2.8-6.3%). The 12-month rates of MACCE, all-cause mortality, cardiovascular mortality, and stroke were 21.2% (18.4-24.1%), 17.9% (15.2-20.5%), 11.7% (9.4-14.1%), and 4.5% (2.9-6.1%), respectively. The 12-month rates of all-cause mortality were 11.1, 16.5, and 23.6% among patients with a logistic EuroSCORE ≤10%, EuroSCORE 10-20%, and EuroSCORE >20% (P< 0.05), respectively. CONCLUSION The ADVANCE study demonstrates the safety and effectiveness of the CoreValve System with low mortality and stroke rates in higher risk real-world patients with severe aortic stenosis.
Resumo:
Background Concurrent cardiac diseases are frequent among elderly patients and invite simultaneous treatment to ensure an overall favourable patient outcome. Aim To investigate the feasibility of combined single-session percutaneous cardiac interventions in the era of transcatheter aortic valve implantation (TAVI). Methods This prospective, case–control study included 10 consecutive patients treated with TAVI, left atrial appendage occlusion and percutaneous coronary interventions. Some in addition had patent foramen ovale or atrial septal defect closure in the same session. The patients were matched in a 1:10 manner with TAVI-only cases treated within the same time period at the same institution regarding their baseline factors. The outcome was validated according to the Valve Academic Research Consortium (VARC) criteria. Results Procedural time (126±42 vs 83±40 min, p=0.0016), radiation time (34±8 vs 22±12 min, p=0.0001) and contrast dye (397±89 vs 250±105 mL, p<0.0001) were higher in the combined intervention group than in the TAVI-only group. Despite these drawbacks, no difference in the VARC endpoints was evident during the in-hospital period and after 30 days (VARC combined safety endpoint 32% for TAVI only and 20% for combined intervention, p=1.0). Conclusions Transcatheter treatment of combined cardiac diseases is feasible even in a single session in a high-volume centre with experienced operators.
Resumo:
OBJECTIVES This study reports a series of pitfalls, premature failures and explantations of the third-generation Freedom SOLO (FS) bovine pericardial stentless valve. METHODS A total of 149 patients underwent aortic valve replacement using the FS. Follow-up was 100% complete with an average observation time of 5.5 ± 2.3 years (maximum 8.7 years) and a total of 825 patient-years. Following intraoperative documentation, all explanted valve prostheses underwent histological examination. RESULTS Freedom from structural valve deterioration (SVD) at 5, 6, 7, 8 and 9 years was 92, 88, 80, 70 and 62%, respectively. Fourteen prostheses required explantation due to valve-independent dysfunction (n = 5; i.e. thrombus formation, oversizing, aortic dilatation, endocarditis and suture dehiscence) or valve-dependent failure (acute leaflet tears, n = 4 and severe stenosis, n = 5). Thus, freedom from explantation at 5, 6, 7, 8 and 9 years was 95, 94, 91, 81 and 72%, respectively. An acute vertical tear along the non-coronary/right coronary commissure to the base occurred at a mean of 6.0 years (range 4.3-7.3 years) and affected size 25 and 27 prostheses exclusively. Four FS required explantation after a mean of 7.5 years (range 7.0-8.3 years) due to severe functional stenosis and gross calcification that included the entire aortic root. CONCLUSIONS The FS stentless valve is safe to implant and shows satisfying mid-term results in our single institution experience. Freedom from SVD and explantation decreased markedly after only 6-7 years, so that patients with FS require close observation and follow-up. Exact sizing, symmetric positioning and observing patient limitations are crucial for optimal outcome.