883 resultados para Minimization of open stack problem
Resumo:
The stability analysis of open cavity flows is a problem of great interest in the aeronautical industry. This type of flow can appear, for example, in landing gears or auxiliary power unit configurations. Open cavity flows is very sensitive to any change in the configuration, either physical (incoming boundary layer, Reynolds or Mach numbers) or geometrical (length to depth and length to width ratio). In this work, we have focused on the effect of geometry and of the Reynolds number on the stability properties of a threedimensional spanwise periodic cavity flow in the incompressible limit. To that end, BiGlobal analysis is used to investigate the instabilities in this configuration. The basic flow is obtained by the numerical integration of the Navier-Stokes equations with laminar boundary layers imposed upstream. The 3D perturbation, assumed to be periodic in the spanwise direction, is obtained as the solution of the global eigenvalue problem. A parametric study has been performed, analyzing the stability of the flow under variation of the Reynolds number, the L/D ratio of the cavity, and the spanwise wavenumber β. For consistency, multidomain high order numerical schemes have been used in all the computations, either basic flow or eigenvalue problems. The results allow to define the neutral curves in the range of L/D = 1 to L/D = 3. A scaling relating the frequency of the eigenmodes and the length to depth ratio is provided, based on the analysis results.
Resumo:
This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region
Resumo:
La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.
Resumo:
El problema del flujo sobre una cavidad abierta ha sido estudiado en profundidad en la literatura, tanto por el interés académico del problema como por sus aplicaciones prácticas en gran variedad de problemas ingenieriles, como puede ser el alojamiento del tren de aterrizaje de aeronaves, o el depósito de agua de aviones contraincendios. Desde hace muchos a˜nos se estudian los distintos tipos de inestabilidades asociadas a este problema: los modos bidimensionales en la capa de cortadura, y los modos tridimensionales en el torbellino de recirculación principal dentro de la cavidad. En esta tesis se presenta un estudio paramétrico completo del límite incompresible del problema, empleando la herramienta de estabilidad lineal conocida como BiGlobal. Esta aproximación permite contemplar la estabilidad global del flujo, y obtener tanto la forma como las características de los modos propios del problema físico, sean estables o inestables. El estudio realizado permite caracterizar con gran detalle todos los modos relevantes, así como la envolvente de estabilidad en el espacio paramétrico del problema incompresible (Mach nulo, variación de Reynolds, espesor de capa límite incidente, relación altura/profundidad de la cavidad, y longitud característica de la perturbación en la dirección transversal). A la luz de los resultados obtenidos se proponen una serie de relaciones entre los parámetros y características de los modos principales, como por ejemplo entre el Reynolds crítico de un modo, y la longitud característica del mismo. Los resultados numéricos se contrastan con una campaña experimental, siendo la principal conclusión de dicha comparación que los modos lineales están presentes en el flujo real saturado, pero que existen diferencias notables en frecuencia entre las predicciones teóricas y los experimentos. Para intentar determinar la naturaleza de dichas diferencias se realiza una simulación numérica directa tridimensional, y se utiliza un algoritmo de DMD (descomposición dinámica de modos) para describir el proceso de saturación. ABSTRACT The problem of the flow over an open cavity has been studied in depth in the literature, both for being an interesting academical problem and due to the multitude of industrial applications, like the landing gear of aircraft, or the water deposit of firefighter airplanes. The different types of instabilities appearing in this flow studied in the literature are two: the two-dimensional shear layer modes, and the three-dimensional modes that appear in the main recirculating vortex inside the cavity. In this thesis a parametric study in the incompressible limit of the problem is presented, using the linear stability analysis known as BiGlobal. This approximation allows to obtain the global stability behaviour of the flow, and to capture both the morphological features and the characteristics of the eigenmodes of the physical problem, whether they are stable or unstable. The study presented here characterizes with great detail all the relevant eigenmodes, as well as the hypersurface of instability on the parameter space of the incompressible problem (Mach equal to zero, and variation of the Reynolds number, the incoming boundary layer thickness, the length to depth aspect ratio of the cavity and the spanwise length of the perturbation). The results allow to construct parametric relations between the characteristics of the leading eigenmodes and the parameters of the problem, like for example the one existing between the critical Reynolds number and its characteristic length. The numerical results presented here are compared with those of an experimental campaign, with the main conclusion of said comparison being that the linear eigenmode are present in the real saturated flow, albeit with some significant differences in the frequencies of the experiments and those predicted by the theory. To try to determine the nature of those differences a three-dimensional direct numerical simulation, analyzed with Dynamic Mode Decomposition algorithm, was used to describe the process of saturation.
Resumo:
There is a growing body of literature that provides evidence for the efficacy of positive youth development programs in general and preliminary empirical support for the efficacy of the Changing Lives Program (CLP) in particular. This dissertation sought to extend previous efforts to develop and preliminarily examine the Transformative Goal Attainment Scale (TGAS) as a measure of participant empowerment in the promotion of positive development. Consistent with recent advances in the use of qualitative research methods, this dissertation sought to further investigate the utility of Relational Data Analysis (RDA) for providing categorizations of qualitative open-ended response data. In particular, a qualitative index of Transformative Goals, TG, was developed to complement the previously developed quantitative index of Transformative Goal Attainment (TGA), and RDA procedures for calculating reliability and content validity were refined. Second, as a Stage I pilot/feasibility study this study preliminarily examined the potentially mediating role of empowerment, as indexed by the TGAS, in the promotion of positive development. ^ Fifty-seven participants took part in this study, forty CLP intervention participants and seventeen control condition participants. All 57 participants were administered the study's measures just prior to and just following the fall 2003 semester. This study thus used a short-term longitudinal quasi-experimental research design with a comparison control group. ^ RDA procedures were refined and applied to the categorization of open-ended response data regarding participants' transformative goals (TG) and future possible selves (PSQ-QE). These analyses revealed relatively strong, indirect evidence for the construct validity of the categories as well as their theoretically meaningful structural organization, thereby providing sufficient support for the utility of RDA procedures in the categorization of qualitative open-ended response data. ^ In addition, transformative goals (TG) and future possible selves (PSQ-QE), and the quantitative index of perceived goal attainment (TGA) were evaluated as potential mediators of positive development by testing their relationships to other indices of positive intervention outcome within a four-step method involving both analysis of variance (ANOVA and RMANOVAs) and regression analysis. Though more limited in scope than the efforts at the development and refinement of the measures of these mediators, the results were also promising. ^
Resumo:
Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.
Resumo:
This paper examines the proposition that increased ability to have a voice and be listened to, through ‘open ICT4D’ and ‘open content creation’ can be an effective mechanism for development. The paper discusses empirical work that strongly indicates that this only happens when voice is appropriately valued in the development process. Having a voice in development processes are less effective when participation is limited. Open ICT allows for more and more voices to be heard, but it is open ICT4D that has the obligation to ensure voices are listened to. In the paper I first explore participatory development and the idea of open ICT4D before elaborating on issues of voice and thinking about voice as process, and voice as value. Research findings are presented from research that experimented with participatory (or open) content creation, discussed in relation to notions of openness and voice. I then consider the challenges of listening, before drawing some conclusions about opening up ICT4D research.
Resumo:
The homeless have been subject to considerable scrutiny, historically and within current social, political and public discourse. The aetiology of homelessness has been the focus of a large body of economic, sociological, historical and political investigation. Importantly, efforts to conceptualise, explain and measure, the phenomenon of homelessness and homeless people has occurred largely within the context of defining “the problem of the homeless” and the generation of solutions to the ‘problem’. There has been little consideration of how and why homelessness has come to be seen, or understood, as a problem, or how this can change across time and/or place. This alternative stream of research has focused on tracing and analysing the relationship between how people experiencing homeless have become a matter of government concern and the manner in which homelessness itself has been problematised. With this in mind this study has analysed the discourses - political, social and economic rationalities and knowledges - which have provided the conditions of possibility for the identification of the homeless and homelessness as a problem needing to be governed and the means for translating these discourses into the applied domain. The aim of this thesis has been to contribute to current knowledge by developing a genealogy of the conditions and rationalities that have underpinned the problematisation of homelessness and the homeless. The outcome of this analysis has been to open up the opportunity to consider alternative governmental possibilities arising from the exposure of the way in which contemporary problematisation and responses have been influenced by the past. An understanding of this process creates an ability to appreciate the intended and unintended consequences for the future direction of public policy and contemporary research.
Resumo:
There has been an increasing interest by governments worldwide in the potential benefits of open access to public sector information (PSI). However, an important question remains: can a government incur tortious liability for incorrect information released online under an open content licence? This paper argues that the release of PSI online for free under an open content licence, specifically a Creative Commons licence, is within the bounds of an acceptable level of risk to government, especially where users are informed of the limitations of the data and appropriate information management policies and principles are in place to ensure accountability for data quality and accuracy.
Resumo:
In this paper, three metaheuristics are proposed for solving a class of job shop, open shop, and mixed shop scheduling problems. We evaluate the performance of the proposed algorithms by means of a set of Lawrence’s benchmark instances for the job shop problem, a set of randomly generated instances for the open shop problem, and a combined job shop and open shop test data for the mixed shop problem. The computational results show that the proposed algorithms perform extremely well on all these three types of shop scheduling problems. The results also reveal that the mixed shop problem is relatively easier to solve than the job shop problem due to the fact that the scheduling procedure becomes more flexible by the inclusion of more open shop jobs in the mixed shop.
Resumo:
Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.
Resumo:
A key issue in the economic development and performance of organizations is the existence of standards. Their definition and control are sources of power and it is important to understand their concept, as it gives standards their direction and their legitimacy, and to explore how they are represented and applied. The difficulties posed by classical micro-economics in establishing a theory of standardization that is compatible with its fundamental axiomatic are acknowledged. We propose to reconsider the problem by taking the opposite perspective in questioning its theoretical base and by reformulating assumptions about the independent and autonomous decisions taken by actors. The Theory of Conventions will offer us a theoretical framework and tools enabling us to understand the systemic dimension and dynamic structure of standards. These will be seen as a special case of conventions. This work aims to provide a sound basis and promote a better consciousness in the development of global project management standards. It aims also to emphasize that social construction is not a matter of copyright but a matter of open minds, collective cognitive process and freedom for the common wealth.
Resumo:
A key issue for the economic development and for performance of organizations is the existence of standards. As their definitions and control are source of power, it seems to be important to understand the concept and to wonder about the representations authorized by the concept which give their direction and their legitimacy. The difficulties of classical microeconomics of establishing a theory of standardisation compatible with its fundamental axiomatic are underlined. We propose to reconsider the problem by carrying out the opposite way: to question the theoretical base, by reformulating assumptions on the autonomy of the choice of the actors. The theory of conventions will offer us both a theoretical framework and tools, enabling us to understand the systemic dimension and dynamic structure of standards seen as special case of conventions. This work aims thus to provide a sound basis and promote a better consciousness in the development of global project management standards, aiming also to underline that social construction is not a matter of copyright but a matter of open minds, collective cognitive process and freedom for the common wealth.
Resumo:
In 1984 the School of Architecture and Built Environment within the University of Newcastle, Australia introduced an integrated program based on real design projects and using Integrated Problem Based Learning (IPBL) as the teaching method. Since 1984 there have been multiple changes arising from the expectations of the architectural fraternity, enrolling students, lecturers, available facilities, accreditation authorities and many others. These challenges have been successfully accommodated whilst maintaining the original purposes and principles of IPBL. The Architecture program has a combined two-degree structure consisting of a first degree, Bachelor of Science (Architecture), followed by a second degree, Bachelor of Architecture. The program is designed to simulate the problem-solving situations that face a working architect in every day practice. This paper will present the degree structure where each student is enrolled in a single course per semester incorporating design integration and study areas in design studies, professional studies, historical studies, technical studies, environmental studies and communication skills. Each year the design problems increase in complexity and duration set around an annual theme. With 20 years of successful delivery of any program there are highlights and challenges along the way and this paper will discuss some of the successes and barriers experienced within the School of Architecture and Built Environment in delivering IPBL. In addition, the reflective process investigates the currency of IPBL as an appropriate vehicle for delivering the curriculum in 2004 and any additional administrative or staff considerations required to enhance the continuing application of IPBL.
Resumo:
Women are underrepresented in science, technology, engineering and mathematics (STEM) areas in university settings; however this may be the result of attitude rather than aptitude. There is widespread agreement that quantitative problem-solving is essential for graduate competence and preparedness in science and other STEM subjects. The research question addresses the identities and transformative experiences (experiential, perception, & motivation) of both male and female university science students in quantitative problem solving. This study used surveys to investigate first-year university students’ (231 females and 198 males) perceptions of their quantitative problem solving. Stata (statistical analysis package version 11) analysed gender differences in quantitative problem solving using descriptive and inferential statistics. Males perceived themselves with a higher mathematics identity than females. Results showed that there was statistical significance (p<0.05) between the genders on 21 of the 30 survey items associated with transformative experiences. Males appeared to have a willingness to be involved in quantitative problem solving outside their science coursework requirements. Positive attitudes towards STEM-type subjects may need to be nurtured in females before arriving in the university setting (e.g., high school or earlier). Females also need equitable STEM education opportunities such as conversations or activities outside school with family and friends to develop more positive attitudes in these fields.