956 resultados para Mediterranean dry grasslands
Resumo:
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.
Resumo:
BACKGROUND: Routine assessment of dry weight in chronic hemodialysis patients relies primarily on clinical evaluation of patient fluid status. We evaluated whether measurement of postdialytic vascular refill could assist in the assessment of dry weight. METHODS: Twenty-eight chronic, stable hemodialysis patients were studied during routine treatment sessions using constant dialysate temperature and dialysate sodium concentration, and relative changes in blood volume were monitored using Crit-Line III monitors throughout this study. The study was divided into three phases. Phase 1 studies evaluated the time-dependence of vascular compartment refill after completion of hemodialysis. Phase 2 studies evaluated the relationships in patient subgroups between intradialytic changes in blood volume and the presence of postdialytic vascular compartment refill during that last 10 minutes of hemodialysis after stopping ultrafiltration. Phase 3 studies evaluated the extent of dry weight changes following the application of a protocol for blood volume reduction, postdialytic vascular compartment refill, and correlation with clinical evidence of intradialytic hypovolemia and/or postdialytic fatigue. Phase 3 included anywhere from three to five treatments. RESULTS: Phase 1 studies demonstrated that despite interpatient variability in the magnitude of postdialytic vascular compartment refill, when significant refill was evident, it always continued for at least 30 minutes. However, the majority of refill took place within 10 minutes postdialysis. Phase 2 studies identified 3 groups of patients: those who exhibited intradialytic reductions in blood volume but not postdialytic vascular compartment refill (group 1), those who exhibited intradialytic reductions in blood volume and postdialytic vascular compartment refill (group 2), and those whose blood volume did not change substantially during hemodialysis treatment (group 3). In phase 3 studies, use of an ultrafiltration protocol for blood volume reduction and monitoring of postdialytic vascular compartment refill combined with clinical assessment of hypovolemia and postdialytic fatigue demonstrated that patients often had a clinical dry weight assessment which was too low or too high. In all 28 patients studied, dry weight was either increased or decreased following use of this protocol. CONCLUSION: Determination of the extent of both intradialytic decreases in blood volume and postdialytic vascular compartment refill, combined with clinical assessment of intradialytic hypovolemia and postdialytic fatigue, can help assess patient dry weight and optimize volume status while reducing dialysis associated morbidity. The number of hospital admissions due to fluid overload may be reduced.
Resumo:
In this study, the effect of dry oxidation on the electrochemical properties of carbon nanotube arrays is investigated. Oxygenated surface functional groups were introduced to the arrays by oxygen plasma treatment, where their surface concentrations were varied by controlling the exposure time. The finding presented herein shows an augmentation of nearly thirty times in term of specific capacitance when the arrays are oxidized. Similar behavior is also observed in the non-aqueous electrolytes where the specific capacitance of the oxidized carbon nanotube arrays is measured more than three times higher than that of the pristine ones. However, overexposure to oxygen plasma treatment reverses this effect. At such high oxidation level, the damage to the graphitic structure becomes more pronounced such that the capacitive behavior of the arrays is overshadowed by their resistive behavior. These findings are important for further development of carbon nanotube based electrochemical capacitors. © 2012 Materials Research Society.
Resumo:
The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.
Resumo:
After damming of the Yangtze River, in order to explore the impacts of the Three-Gorge Dam (TGD) on the aquatic ecosystem, phytoplankton composition, abundance and biomass spatial distribution were studied in the Three-Gorge Reservoir (TGR), and the closest upstream anabranch Xiangxi River, which is 38 kin away from the Three-Gorge Dam (TGD) during August (rainy season) 2004 and April (dry season) 2005. In surveys, 6 transects (2 downstream and 4 cross-stream) and 25 stations have been investigated and 314 samples were collected from the surface to the river bed with water samplers. In TGR, 63 taxa and 60 taxa were identified in the rainy and dry seasons, respectively. In the Xiangxi River, 39 taxa were observed in the rainy and dry seasons. Algal blooms occurred in the Xiangxi River and at the influx region of the Yangtze and Xiangxi in both seasons, but had not occurred prior to damming. In the rainy season, the dominant species was Chroomonas acuta with 1.84 x 10(7) cells l(-1), and in the dry season the dominant species were Asterionella formosa and Cryptomonas ovata with 1.34 x 10(7) cells l(-1) and 1.79 x 10(6) cells(.)l(-1), respectively. In the main channel of TGR, there were no significant correlations between phytoplankton abundance and the concentrations of the main soluble nutrients. In the Xiangxi River, significant negative correlations were observed between phytoplankton abundance and nitrate (Spearman, p < 0.01, n=21), phosphate (Spearman, p < 0.05, n=21) and silicate (Spearman, p < 0.01, n=21) in the rainy season, and similar correlations were also observed with nitrate (Spearman, p < 0.05, n=28) and silicate (Speannan, p < 0.01, n=28), but not with phosphate in the dry season. Since the damming of the Yangtze River, eutrophication in the anabranch within the backwater has occurred and become severe, and the frequency of algal bloom within TGR and anabranches is expected to increase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrier-based DPIs was investigated. METHODS: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30 and 60 Lmin−1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. RESULTS: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51% at 30 Lmin−1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. CONCLUSION: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.
Resumo:
Concentration of trace elements measured by dry weight basis has become more commonly used in recent studies on cetaceans than wet weight basis, which was used more in earlier studies. Because few authors present moisture content data in their papers, it is difficult to compare the concentrations of trace elements between various studies. Therefore, we felt that it would be useful if a reference conversion factor (CF) for tissue types could be found to convert between wet weight and dry weight data on trace element concentrations. We determined the moisture contents of 14 tissues of Dall's porpoise (Phocoenoides dalli), and then, calculated the CF values for those tissues. Because the moisture content of each tissue differs from other tissues, it is necessary to use a specific CIF for each tissue rather than a general CF for several tissues. We have also found that CIF values for Dall's porpoise tissues are similar to the same tissues in other cetaceans. Therefore CF values from Dall's porpoise can be reliably used to convert between wet and dry weight concentrations for other cetacean tissues as reference data. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study we report on surface crystallization phenomena and propose a solution for the fabrication of long and robust tellurite glass fibers. The bulk tellurite glasses of interest were prepared by melting and quenching techniques. Tellurite glass preforms and fibers were fabricated by suction casting and rod-in-tube drawing methods, respectively. The surfaces of the tellurite bulk glass samples and of the drawn fibers prepared under different controlled atmospheres were examined by X-ray diffraction. When the tellurite glass fibers were drawn in ambient air containing water vapor, four primary kinds of small crystals were found to appear on the fiber surface, alpha-TeO(2), gamma-TeO(2), Zn(2)Te(3)O(8) and Na(2)Zn(3)(CO(3))(4)center dot 3H(2)O. A mechanism for this surface crystallization is proposed and a solution described, using an ultra-dry oxygen gas atmosphere to effectively prevent surface crystallization during fiber drawing. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
该文测定和分析了黄土高原半干旱偏旱区不同生长年限苜蓿草地以及轮作不同年限粮食作物后0~1000cm深层土壤水分变化规律。结果表明:随着苜蓿生长年限的延长,苜蓿草地土壤干层厚度逐渐增加,3年生苜蓿草地土壤干层深度达到760cm,6、7、10年生苜蓿草地土壤干层深度均超过1000cm,6年生苜蓿地1000~1500cm土层仍为干燥层,土壤平均湿度为9.68%;采用草粮轮作能明显减小苜蓿草地干层的厚度和范围,0~1000cm土壤水分较10年生苜蓿草地都有不同程度的恢复,轮作2、6、8、12和18a粮田平均土壤水分恢复速率25.2mm/a,年均累积恢复土层厚度123.1cm,0~300cm土层水分恢复程度较高,且轮作年限愈长,土壤水分恢复效果越好,轮作18a粮食作物后0~660cm土层土壤水分恢复量达到了531.1mm;苜蓿草地适宜翻耕年限为5~6a,且6年生苜蓿草地0~1000cm土壤水分恢复到当地土壤稳定湿度值需要23.8a,该地区适宜的苜蓿-粮食轮作模式为"5~6年生苜蓿→24年粮食作物"。
Resumo:
GaAs/AlGaAs quantum dot arrays with different dot sizes made by different fabrication processes were studied in this work. In comparison with the reference quantum well, photoluminescence (PL) spectra from the samples at low temperature have demonstrated that PL peak positions shift to higher energy side due to quantization confinement effects and the blue-shift increases with decreasing dot size, PL linewidths are broadened and intensities are much reduced. It is also found that wet chemical etching after reactive ion etching can improve optical properties of the quantum dot arrays.