911 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer
Resumo:
Programa de doctorado: Tecnología industrial
Resumo:
La tesi consiste nell’implementare un software in grado a predire la variazione della stabilità di una proteina sottoposta ad una mutazione. Il predittore implementato fa utilizzo di tecniche di Machine-Learning ed, in particolare, di SVM. In particolare, riguarda l’analisi delle prestazioni di un predittore, precedentemente implementato, sotto opportune variazioni dei parametri di input e relativamente all’utilizzo di nuova informazione rispetto a quella utilizzata dal predittore basilare.
Resumo:
The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.
Resumo:
L'elaborato ha come scopo l'analisi delle tecniche di Text Mining e la loro applicazione all'interno di processi per l'auto-organizzazione della conoscenza. La prima parte della tesi si concentra sul concetto del Text Mining. Viene fornita la sua definizione, i possibili campi di utilizzo, il processo di sviluppo che lo riguarda e vengono esposte le diverse tecniche di Text Mining. Si analizzano poi alcuni tools per il Text Mining e infine vengono presentati alcuni esempi pratici di utilizzo. Il macro-argomento che viene esposto successivamente riguarda TuCSoN, una infrastruttura per la coordinazione di processi: autonomi, distribuiti e intelligenti, come ad esempio gli agenti. Si descrivono innanzi tutto le entità sulle quali il modello si basa, vengono introdotte le metodologie di interazione fra di essi e successivamente, gli strumenti di programmazione che l'infrastruttura mette a disposizione. La tesi, in un secondo momento, presenta MoK, un modello di coordinazione basato sulla biochimica studiato per l'auto-organizzazione della conoscenza. Anche per MoK, come per TuCSoN, vengono introdotte le entità alla base del modello. Avvalendosi MoK dell'infrastruttura TuCSoN, viene mostrato come le entità del primo vengano mappate su quelle del secondo. A conclusione dell'argomento viene mostrata un'applicazione per l'auto-organizzazione di news che si avvale del modello. Il capitolo successivo si occupa di analizzare i possibili utilizzi delle tecniche di Text Mining all'interno di infrastrutture per l'auto-organizzazione, come MoK. Nell'elaborato vengono poi presentati gli esperimenti effettuati sfruttando tecniche di Text Mining. Tutti gli esperimenti svolti hanno come scopo la clusterizzazione di articoli scientifici in base al loro contenuto, vengono quindi analizzati i risultati ottenuti. L'elaborato di tesi si conclude mettendo in evidenza alcune considerazioni finali su quanto svolto.
Resumo:
La Word Sense Disambiguation è un problema informatico appartenente al campo di studi del Natural Language Processing, che consiste nel determinare il senso di una parola a seconda del contesto in cui essa viene utilizzata. Se un processo del genere può apparire banale per un essere umano, può risultare d'altra parte straordinariamente complicato se si cerca di codificarlo in una serie di istruzioni esguibili da una macchina. Il primo e principale problema necessario da affrontare per farlo è quello della conoscenza: per operare una disambiguazione sui termini di un testo, un computer deve poter attingere da un lessico che sia il più possibile coerente con quello di un essere umano. Sebbene esistano altri modi di agire in questo caso, quello di creare una fonte di conoscenza machine-readable è certamente il metodo che permette di affrontare il problema in maniera più diretta. Nel corso di questa tesi si cercherà, come prima cosa, di spiegare in cosa consiste la Word Sense Disambiguation, tramite una descrizione breve ma il più possibile dettagliata del problema. Nel capitolo 1 esso viene presentato partendo da alcuni cenni storici, per poi passare alla descrizione dei componenti fondamentali da tenere in considerazione durante il lavoro. Verranno illustrati concetti ripresi in seguito, che spaziano dalla normalizzazione del testo in input fino al riassunto dei metodi di classificazione comunemente usati in questo campo. Il capitolo 2 è invece dedicato alla descrizione di BabelNet, una risorsa lessico-semantica multilingua di recente costruzione nata all'Università La Sapienza di Roma. Verranno innanzitutto descritte le due fonti da cui BabelNet attinge la propria conoscenza, WordNet e Wikipedia. In seguito saranno illustrati i passi della sua creazione, dal mapping tra le due risorse base fino alla definizione di tutte le relazioni che legano gli insiemi di termini all'interno del lessico. Infine viene proposta una serie di esperimenti che mira a mettere BabelNet su un banco di prova, prima per verificare la consistenza del suo metodo di costruzione, poi per confrontarla, in termini di prestazioni, con altri sistemi allo stato dell'arte sottoponendola a diversi task estrapolati dai SemEval, eventi internazionali dedicati alla valutazione dei problemi WSD, che definiscono di fatto gli standard di questo campo. Nel capitolo finale vengono sviluppate alcune considerazioni sulla disambiguazione, introdotte da un elenco dei principali campi applicativi del problema. Vengono in questa sede delineati i possibili sviluppi futuri della ricerca, ma anche i problemi noti e le strade recentemente intraprese per cercare di portare le prestazioni della Word Sense Disambiguation oltre i limiti finora definiti.
Resumo:
Questo elaborato ha come scopo quello di analizzare ed esaminare una patologia oggetto di attiva ricerca scientifica, la sindrome dell’arto fantasma o phantom limb pain: tracciando la storia delle terapie più utilizzate per la sua attenuazione, si è giunti ad analizzarne lo stato dell’arte. Consapevoli che la sindrome dell’arto fantasma costituisce, oltre che un disturbo per chi la prova, uno strumento assai utile per l’analisi delle attività nervose del segmento corporeo superstite (moncone), si è svolta un’attività al centro Inail di Vigorso di Budrio finalizzata a rilevare segnali elettrici provenienti dai monconi superiori dei pazienti che hanno subito un’amputazione. Avendo preliminarmente trattato l’argomento “Machine learning” per raggiungere una maggiore consapevolezza delle potenzialità dell’apprendimento automatico, si sono analizzate la attività neuronali dei pazienti mentre questi muovevano il loro arto fantasma per riuscire a settare nuove tipologie di protesi mobili in base ai segnali ricevuti dal moncone.
Machine Learning applicato al Web Semantico: Statistical Relational Learning vs Tensor Factorization
Resumo:
Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.
Resumo:
La tesi riguarda lo sviluppo di recommender system che hanno lo scopo di supportare chi è alla ricerca di un lavoro e le aziende che devono selezionare la giusta figura. A partire da un insieme di skill il sistema suggerisce alla persona la posizione lavorativa più affine al suo profilo, oppure a partire da una specifica posizione lavorativa suggerisce all'azienda la persona che più si avvicina alle sue esigenze.