994 resultados para MORPHOLOGICAL CONTROL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review: To examine the relationship between energy intake, appetite control and exercise, with particular reference to longer term exercise studies. This approach is necessary when exploring the benefits of exercise for weight control, as changes in body weight and energy intake are variable and reflect diversity in weight loss. Recent findings: Recent evidence indicates that longer term exercise is characterized by a highly variable response in eating behaviour. Individuals display susceptibility or resistance to exercise-induced weight loss, with changes in energy intake playing a key role in determining the degree of weight loss achieved. Marked differences in hunger and energy intake exist between those who are capable of tolerating periods of exercise-induced energy deficit, and those who are not. Exercise-induced weight loss can increase the orexigenic drive in the fasted state, but for some this is offset by improved postprandial satiety signalling. Summary: The biological and behavioural responses to acute and long-term exercise are highly variable, and these responses interact to determine the propensity for weight change. For some people, long-term exercise stimulates compensatory increases in energy intake that attenuate weight loss. However, favourable changes in body composition and health markers still exist in the absence of weight loss. The physiological mechanisms that confer susceptibility to compensatory overconsumption still need to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resource allocation and utilization discourse is dominated by debates about rights particularly individual property rights and ownership. This is due largely to the philosophic foundations provided by Hobbes and Locke and adopted by Bentham. In our community, though, resources come not merely with rights embedded but also obligations. The relevant laws and equitable principles which give shape to our shared rights and obligations with respect to resources take cognizance not merely of the title to the resource (the proprietary right) but the particular context in which the right is exercised. Moral philosophy regarding resource utilisation has from ancient times taken cognizance of obligations but with ascendance of modernity, the agenda of moral philosophy regarding resources, has been dominated, at least since John Locke, by a preoccupation with property rights; the ethical obligations associated with resource management have been largely ignored. The particular social context has also been ignored. Exploring this applied ethical terrain regarding resource utilisation, this thesis: (1) Revisits the justifications for modem property rights (and in that the exclusion of obligations); (2) Identifies major deficiencies in these justifications and reasons for this; (3) Traces the concept of stewardship as understood in classical Greek writing and in the New Testament, and considers its application in the Patristic period and by Medieval and reformist writers, before turning to investigate its influence on legal and equitable concepts through to the current day; 4) Discusses the nature of the stewardship obligation,maps it and offers a schematic for applying the Stewardship Paradigm to problems arising in daily life; and, (5) Discusses the way in which the Stewardship Paradigm may be applied by, and assists in resolving issues arising from within four dominant philosophic world views: (a) Rawls' social contract theory; (b) Utilitarianism as discussed by Peter Singer; (c) Christianity with particular focus on the theology of Douglas Hall; (d) Feminism particularly as expressed in the ethics of care of Carol Gilligan; and, offers some more general comments about stewardship in the context of an ethically plural community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.