913 resultados para Long non-coding RNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosteroneproducing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems. Extensive studies have been conducted to analyse the role that regulation of CYP11B2, the gene encoding the aldosterone synthase enzyme plays in determining aldosterone production and the development of hypertension. One significant regulatory factor that has only recently emerged is microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of enzymatic processes, that negatively regulate gene expression at the posttranscriptional level. Detection and manipulation of miRNA is now known to be a viable method in the treatment, prevention and prognosis of certain diseases. The aim of the present study was to identify miRNAs likely to have a role in the regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of APA and normal human adrenal tissue was compared, as was the H295R adrenocortical cell line model of adrenocortical function, under both basal conditions and following stimulation of aldosterone production. Key differentially-expressed miRNAs were then identified and bioinformatic tools used to identify likely mRNA targets and pathways for these miRNAs, several of which were investigated and validated using in vitro methods. The background to this study is set out in Chapter 1 of this thesis, followed by a description of the major technical methods employed in Chapter 2. Chapter 3 presents the first of the study results, analysing differences in miRNA profile between APA and normal human adrenal tissue. Microarray was implemented to detect the expression of miRNAs in these two tissue types and several miRNAs were found to vary significantly and consistently between them. Furthermore, members of several miRNA clusters exhibited similar changes in expression pattern between the two tissues e.g. members of cluster miR-29b-1 (miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c- 3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR- 134 and miR-382) are upregulated. Further bioinformatic analysis explored the possible biological function of these miRNAs using Ingenuity® Systems Pathway Analysis software. This led to the identification of validated mRNAs already known to be targeted by these miRNAs, as well as the prediction of other mRNAs that are likely targets and which are involved in processes relevant to APA pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis (CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR- 335-5p would reduce HMGCR and CYP11B2 expression. Chapter 4 describes the characterisation of H295R cells of different strains and sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed following application of 3 different stimulants: Angio II, dbcAMP and KCl. The most responsive strain to stimulation was Strain 1 at lower passage numbers. Furthermore, H295R proliferation increased following Angio II stimulation. In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p reduces HMGCR and CYP11B2 expression was tested using realtime quantitative RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were shown to downregulate CYP11B2 and HMGCR expression, thereby validating certain of the bioinformatic predictions generated in Chapter 3. The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, analysing how it changes under conditions that increase aldosterone secretion, including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a substitute for adrenocorticotropic hormone). miRNA profiling identified 7 miRNAs that are consistently downregulated by all three stimuli relative to basal cells: miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b- 5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a- 5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single polycistronic transcript. IPA bioinformatic analysis was again applied to identify experimentally validated and predicted mRNA targets of these miRNAs and the key biological pathways likely to be affected. This predicted several interactions between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p were found to be consistently downregulated by stimulation of aldosterone biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I was able to validate the downregulation of LDLR by miR-17 transfection, as predicted by IPA. In summary, this study identified key miRNAs that are differentially-expressed in vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. The many possible biological actions these miRNAs could have were filtered by bioinformatic analysis and selected interactions validated in vitro. While direct actions of these miRNAs on steroidogenic enzymes were identified, cholesterol handling also emerged as an important target and may represent a useful point of intervention in future therapies designed to modulate aldosterone biosynthesis and reduce its harmful effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While much of the study of molecular biology inevitably focuses on the parts of the genome that contain active genes, there are also non-coding regions that nonetheless play an essential role in maintaining genome integrity. One such region are telomeres, which cap the ends of all eukaryotic chromosomes and play an important role in chromosome protection. Telomere loss occurs at each cell division as a result of the ‘end replication problem’ and a relatively short telomere length is indicative of poor biological state. Thus far, the majority of studies on the dynamics and role of telomeres have been biased towards certain taxa. Research to date has mostly focussed on humans, other mammals and birds. There has been far less research on the telomere dynamics of ectotherms. It is important that we do so, especially since ectothermic vertebrates do not seem to down-regulate telomerase expression in the same way as endotherms, suggesting that their telomere dynamics may be less predictable in the later life stages. The main objective of this thesis was therefore to investigate how life history and environmental effects may influence telomere dynamics in Atlantic salmon Salmo salar. I carried out carefully designed experiments, both in the laboratory and in the wild, using a longitudinal approach where possible, in order to address a number of specific questions that are connected to this central theme. In chapter 2, I demonstrate that there can be significant links between parental life history and offspring telomere dynamics. Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stages. Paternal life history traits, such as early life growth rate, had a greater association with offspring telomere dynamics in the later stages of development. In chapter 3, using a wild Atlantic salmon population, I found that most individuals experienced a reduction in telomere length during the migratory phase of their life cycle; however the relative rate of telomere loss was dependent on sex, with males experiencing a relatively greater loss. Unexpectedly, I also found that juvenile salmon that had the shortest telomeres at the time of outward migration, had the greatest probability of surviving through to the return migration. In chapter 4, again using a wild system involving experimental manipulations of juvenile Atlantic salmon in Scottish streams, I found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. Faster-growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. I also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years that fathers had spent at sea. Chapter 5 explored the hypotheses that oxidative DNA damage, catalase (CAT) antioxidant activity and cell proliferation rate are underlying mechanisms linking incubation temperature and telomere dynamics in salmon embryos. No evidence was found for any such effects, but telomere lengths in salmon embryos were found to be significantly affected by the temperature of the water in which they were living. There is also evidence that telomere length significantly increases during embryonic development. In summary, this thesis has shown that a complex mix of environmental and parental effects appear to influence telomere dynamics in Atlantic salmon, with parental effects especially evident during early life stages. It also demonstrated that telomeres lengthen through the embryo stages of development before reducing once the fry begin feeding, indicating that the patterns of telomere loss commonly found in endotherms may differ in ectotherms. Reasons for this variation in telomere dynamics are presented in the final Discussion chapter of the thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) establishes a lifelong asymptomatic infection by replicating its chromatinized genome, called episome, together with the host genome. EBV exhibits different latency-associated transcriptional repertoires that mirror its three-dimensional structures of the genome. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents almost 10% of all gastric cancers globally. EBVaGC exhibit an intermediate viral transcription profile known as "Latency II", expressing specific viral genes and non-coding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed a destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and consequently, an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II, and III latencies display different 3D episomal structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched chromatin interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV episomes at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3'-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T(≥4) stretch within 50 bp of 3'-flanking region. In vitro analysis of tDNAs with a distanced T(≥4) revealed the existence of non-canonical terminators resembling degenerate T(≥5) elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3' trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3'-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3'-trailer sequences with the potential to contribute novel functional ncRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification and characterization of long noncoding RNA in a variety of tissues represent major achievements that contribute to our understanding of the molecular mechanisms controlling gene expression. In particular, long noncoding RNA play crucial roles in the epigenetic regulation of the adaptive response to environmental cues via their capacity to target chromatin modifiers to specific locus. In addition, these transcripts have been implicated in controlling splicing, translation and degradation of messenger RNA. Long noncoding RNA have also been shown to act as decoy molecules for microRNA. In the heart, a few long noncoding RNA have been demonstrated to regulate cardiac commitment and differentiation during development. Furthermore, recent findings suggest their involvement as regulators of the pathophysiological response to injury in the adult heart. Their high cellular specificity makes them attractive target molecules for innovative therapies and ideal biomarkers.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The ribonucleotide reductase gene tandem bnrdE/bnrdF in SPbeta-related prophages of different Bacillus spp. isolates presents different configurations of intervening sequences, comprising one to three of six non-homologous splicing elements. Insertion sites of group I introns and intein DNA are clustered in three relatively short segments encoding functionally important domains of the ribonucleotide reductase. Comparison of the bnrdE homologs reveals mutual exclusion of a group I intron and an intein coding sequence flanking the codon that specifies a conserved cysteine. In vivo splicing was demonstrated for all introns. However, for two of them a part of the mRNA precursor molecules remains unspliced. Intergenic bnrdE-bnrdF regions are unexpectedly long, comprising between 238 and 541 nt. The longest encodes a putative polypeptide related to HNH homing endonucleases.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: Early initiation of antiretroviral therapy (ART) may dramatically curtail cumulative immunological damage allowing maximal levels of immune preservation/reconstitution and induce an immunovirological status similar to that of HIV-1 LTNPs with low viral reservoirs and polyfunctional HIV-1 specific T cell responses.Methods: We performed a cross-sectional study of an HIV-1 seroconverter cohort on long-term ART (LTTS) and compared it to one of LTNPs. Inclusion criteria for 20 LTTS were: (a) ?4 years ART; (b) long-term aviremia and (c) absence of treatment failure and for 15 LTNPs: (a) ?7 years of documented HIV-1 infection; (b) <1000 HIV-1 RNA copies/mL and ?500 CD4+ T-cells/mm3 in >90% of measurements; (d) absence of AIDS-defining conditions; (e) ART-naı¨ve except for temporary ART for prevention of MTCT. In both cohorts, we analysed residual viral replication and reservoirs in peripheral blood, as measured by cellassociated HIV-1 RNA and DNA in PBMCs, respectively and used polychromatic flow cytometry to analyse HIV-1-specific CD4+ and CD8+ T-cell functional profile in terms of cytokine production using IFN-c, IL-2, TNF-a production.Results: Cell-associated DNA [47.7 (4.8-583.2) in LTTS and 19.7 (0.5-295.5) in LTNPS, p=0.10], and RNA [3.9 (0-36) and 5.8 (0-10.3), respectively] were shown to be similarly low in both cohorts. We identified 103 CD8 T cell epitope-specific responses, all subjects responding to ?1 epitope. Mean responding number of responding epitopes per patient was 2 and 4 in LTTS and LTNPS, respectively. Mean% of cytokine-secreting CD8 T cells was 0.37% and 0.50% (p=0.06), of these 43% and 39% (p=0.12) were secreting simultaneously IFN-c, IL-2 and TNF-a. Respective values for CD4 T cells were 0.28% and 0.33% (p=0.28) of which 33% and 30% (0.32) were secreting these 3 cytokines simultaneously.Conclusions: Long-term aviremia after very early ART initiation is associated with low levels of reservoirs saturation ad residual replication. Although less broad CD8 T cell responses were found in LTTS, HIV-1 specific CD4 and CD8 T cell responses showed similar magnitude and functional profile in the 2 cohorts. Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs. (BHIVA Research Award Winner 2008: Anna Garcia-Diaz.)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: Intervention with antiretroviral treatment (ART) and control of viral replication at the time of HIV-1 seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1 long-term non-progressors (LTNPs).Methodology/Principal Findings: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS) and compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4(+) and CD8(+) T-cell functional profile in terms of cytokine production and cytotoxic capacity using IFN-gamma, IL-2, TNF-alpha production and perforin expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4(+) and CD8(+) T-cells were found in LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8+ T-cells, consistent with a polyfunctional/non-cytotoxic profile in a context of low viral burden.Conclusions: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early treatment initiation and paving the way for further interventions to promote virological control after treatment interruption.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Starting from a biologically active recombinant DNA clone of exogenous unintegrated GR mouse mammary tumor virus, we have generated three subclones of PstI fragments of 1.45, 1.1, and 2.0 kb in the plasmid vector PBR322. The nucleotide sequence has been determined for the clone of 1.45 kb which includes almost the complete region of the long terminal repeat (LTR) plus an adjacent stretch of unique sequence DNA. A short region of the 2.0 kb clone, containing the beginning of the LTR, has also been sequenced. Starting with the A of an initiation codon outside the LTR, we detected an open reading frame of 960 nucleotides, potentially coding for a protein of 320 amino acids (36K). Two hundred nucleotides downstream from the termination codon, and approximately 25 nucleotides upstream from the presumptive initiation site of viral RNA synthesis, we found a promoter-like sequence. The sequence AGTAAA was detected approximately 15-20 nucleotides upstream from the 3' end of virion RNA and probably serves as a polyadenylation signal. The 1.45 kb PstI fragment has been transfected into Ltk- cells together with a plasmid containing the thymidine kinase gene of herpes simplex virus. The virus-specific RNA synthesis detected in a Tk+ cell clone was strongly stimulated by the addition of dexamethasone.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Long noncoding RNAs (lncRNAs) are one of the most intensively studied groups of noncoding elements. Debate continues over what proportion of lncRNAs are functional or merely represent transcriptional noise. Although characterization of individual lncRNAs has identified approximately 200 functional loci across the Eukarya, general surveys have found only modest or no evidence of long-term evolutionary conservation. Although this lack of conservation suggests that most lncRNAs are nonfunctional, the possibility remains that some represent recent evolutionary innovations. We examine recent selection pressures acting on lncRNAs in mouse populations. We compare patterns of within-species nucleotide variation at approximately 10,000 lncRNA loci in a cohort of the wild house mouse, Mus musculus castaneus, with between-species nucleotide divergence from the rat (Rattus norvegicus). Loci under selective constraint are expected to show reduced nucleotide diversity and divergence. We find limited evidence of sequence conservation compared with putatively neutrally evolving ancestral repeats (ARs). Comparisons of sequence diversity and divergence between ARs, protein-coding (PC) exons and lncRNAs, and the associated flanking regions, show weak, but significantly lower levels of sequence diversity and divergence at lncRNAs compared with ARs. lncRNAs conserved deep in the vertebrate phylogeny show lower within-species sequence diversity than lncRNAs in general. A set of 74 functionally characterized lncRNAs show levels of diversity and divergence comparable to PC exons, suggesting that these lncRNAs are under substantial selective constraints. Our results suggest that, in mouse populations, most lncRNA loci evolve at rates similar to ARs, whereas older lncRNAs tend to show signals of selection similar to PC genes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The down-regulation of the tumor-suppressor gene RASSF1A has been shown to increase cell proliferation in several tumors. RASSF1A expression is regulated through epigenetic events involving the polycomb repressive complex 2 (PRC2); however, the molecular mechanisms modulating the recruitment of this epigenetic modifier to the RASSF1 locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand on the RASSF1 gene locus in several cell lines and tissues and binds PRC2. ANRASSF1 is transcribed through RNA polymerase II and is 5'-capped and polyadenylated; it exhibits nuclear localization and has a shorter half-life compared with other lncRNAs that bind PRC2. ANRASSF1 endogenous expression is higher in breast and prostate tumor cell lines compared with non-tumor, and an opposite pattern is observed for RASSF1A. ANRASSF1 ectopic overexpression reduces RASSF1A abundance and increases the proliferation of HeLa cells, whereas ANRASSF1 silencing causes the opposite effects. These changes in ANRASSF1 levels do not affect the RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase in both PRC2 occupancy and histone H3K27me3 repressive marks, specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression was detected on PRC2 occupancy and histone H3K27me3 at the promoter regions of RASSF1C and the four other neighboring genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrated that ANRASSF1 forms an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter. Together, these results demonstrate a novel mechanism of epigenetic repression of the RASSF1A tumor suppressor gene involving antisense unspliced lncRNA, in which ANRASSF1 selectively represses the expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome might contribute to a location-specific epigenetic modulation of genes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The structural and functional repertoire of small non-protein-coding RNAs (ncRNAs) is central for establishing gene regulation networks in cells and organisms. Here, we show that an mRNA-derived 18-nucleotide-long ncRNA is capable of downregulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unkown mechanism of translation regulation. Ribosome-targeted small ncRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Positive-sense RNA viruses are important animal, plant, insect and bacteria pathogens and constitute the largest group of RNA viruses. Due to the relatively small size of their genomes, these viruses have evolved a variety of non-canonical translation mechanisms to optimize coding capacity expanding their proteome diversity. One such strategy is codon redefinition or recoding. First described in viruses, recoding is a programmed translation event in which codon alterations are context dependent. Recoding takes place in a subset of messenger RNA (mRNAs) with some products reflecting new, and some reflecting standard, meanings. The ratio between the two is both critical and highly regulated. While a variety of recoding mechanisms have been documented, (ribosome shunting, stop-carry on, termination-reinitiation, and translational bypassing), the two most extensively employed by RNA viruses are Programmed Ribosomal Frameshifting (PRF) and Programmed Ribosomal Readthrough (PRT). While both PRT and PRF subvert normal decoding for expression of C-terminal extension products, the former involves an alteration of reading frame, and the latter requires decoding of a non-sense codon. Both processes occur at a low but defined frequency, and both require Recoding Stimulatory Elements (RSE) for regulation and optimum functionality. These stimulatory signals can be embedded in the RNA in the form of sequence or secondary structure, or trans-acting factors outside the mRNA such as proteins or micro RNAs (miRNA). Despite 40+ years of study, the precise mechanisms by which viral RSE mediate ribosome recoding for the synthesis of their proteins, or how the ratio of these products is maintained, is poorly defined. This study reveals that in addition to a long distance RNA:RNA interaction, three alternate conformations and a phylogenetically conserved pseudoknot regulate PRT in the carmovirus Turnip crinkle virus (TCV).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modified version of the intruder-resident paradigm was used to investigate if social recognition memory lasts at least 24 h. One hundred and forty-six adult male Wistar rats were used. Independent groups of rats were exposed to an intruder for 0.083, 0.5, 2, 24, or 168 h and tested 24 h after the first encounter with the familiar or a different conspecific. Factor analysis was employed to identify associations between behaviors and treatments. Resident rats exhibited a 24-h social recognition memory, as indicated by a 3- to 5-fold decrease in social behaviors in the second encounter with the same conspecific compared to those observed for a different conspecific, when the duration of the first encounter was 2 h or longer. It was possible to distinguish between two different categories of social behaviors and their expression depended on the duration of the first encounter. Sniffing the anogenital area (49.9% of the social behaviors), sniffing the body (17.9%), sniffing the head (3%), and following the conspecific (3.1%), exhibited mostly by resident rats, characterized social investigation and revealed long-term social recognition memory. However, dominance (23.8%) and mild aggression (2.3%), exhibited by both resident and intruders, characterized social agonistic behaviors and were not affected by memory. Differently, sniffing the environment (76.8% of the non-social behaviors) and rearing (14.3%), both exhibited mostly by adult intruder rats, characterized non-social behaviors. Together, these results show that social recognition memory in rats may last at least 24 h after a 2-h or longer exposure to the conspecific.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The association of cyclophosphamide (CYC) and prednisone (PRED) for the treatment of lung fibrosis in systemic sclerosis (SSc) was only evaluated in uncontrolled studies, although in idiopathic interstitial lung disease (ILD) this association seems to be beneficial in patients with non-specific interstitial pneumonia (NSIP). Objectives: To treat SSc-ILD in a prospective open-label controlled study based on lung pattern during 12 months of treatment. Methods: A 3-year analysis was also performed. Twenty-four consecutive patients with SSc and ILD were submitted to an open lung biopsy. Eighteen patients (NSIP) were randomized in two groups: CYC versus CYC + PRED during 12 months. Lung function tests (diffusion lung capacity of monoxide carbone corrected for hemoglobin concentration (DLCO-Hb), forced vital capacity (FVC), total lung capacity) and Modified Rodnan Skin Score (MRSS) were performed before, after one of treatment and after 3 years from the end of the treatment. Results: Pulmonary function tests were similar in both groups on baseline. After 1 year of treatment, FVC% was comparable between CYC groups (p = 0.72) and in CYC + PRED (p = 0.40). Three years after the end of treatment, FVC% values (p = 0.39 in group CYC and p = 0.61 in CYC + PRED and p = 0.22 in CYC + PRED) and DLCO-Hb (p = 0.54 in CYC and p = 0.28 in CYC + PRED) were similar compared to 1 year of treatment. We observed a reduction of the MRSS in the CYC + PRED group after 1 year of treatment (p = 0.02); although after 3 years, MRSS values remained stable in both groups. Conclusions: CYC was effective to stabilize lung function parameters in NSIP lung pattern of SSc disease for 3 years after the end of a 1-year therapy.