900 resultados para Local computer network


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Webben är en enorm källa för information. Innehållet på webbsidorna är en synlig typ av information, men webben innehåller även information av en annan typ, en mera gömd typ i form av sambanden och nätverken som hyperlänkarna skapar mellan webbsajterna och –sidorna som de kopplar ihop. Forskningsområdet webometri ämnar, bland annat, att skapa ny kunskap ur denna gömda information som finns inbyggt i hyperlänkarna samt att skapa förståelse för hurudana fenomen och förhållanden utanför webben kan finnas representerade i hyperlänkarna. Målet med denna forskning var att öka förståelse för användningen av hyperlänkar på webben och speciellt kommunernas användning av hyperlänkar. Denna forskning undersökte hur kommunerna i Egentliga Finland skapade och mottog hyperlänkar samt hurudana nätverk formades av dessa hyperlänkar. Forskningen kartlade nätverk av direkta länkar mellan kommunerna och av samlänkar till och från kommunerna och undersökte ifall dessa nätverk kunde användas för att undersöka geopolitiska förhållanden och samarbete mellan kommunerna i Egentliga Finland. De övergripande forskningsfrågorna som har besvarats i denna forskning är: 1) Från ett webometriskt perspektiv, hur använder kommunerna i Egentliga Finland webben? 2) Kan hyperlänkar (direkta länkar och samlänkar) användas för att kartlägga geopolitiska förhållanden och samarbete mellan kommuner? 3) Vilka är de viktigaste motiveringarna för att skapa länkar mellan, till och från kommunernas webbsajter? Denna forskning kom till ovanligt tydliga resultat för en webometrisk forskning, både när det gäller upptäckta geografiska faktorer som påverkar hyperlänkningarna och de klassificerade motivationerna för att skapa länkarna. Resultaten visade att de direkta hyperlänkarna mellan kommunerna kan användas för att kartlägga geopolitiska förhållanden och samarbete mellan kommunerna för att de direkta länkarna var motiverade av officiella orsaker och de var klart påverkade av distansen mellan kommunerna och av de ekonomiska regionerna. Samlänkningarna in till kommunerna visade sig fungera som ett mått för geografisk likhet mellan kommunerna, medan samlänkningarna ut från kommunerna visade potential för att kunna användas till för att kartlägga kommunernas gemensamma intressen. Forskningen kontribuerade även till utvecklandet av forskningsområdet webometri. En del av de viktigaste kontributionerna av denna forskning var utvecklandet av nya metoder för webometrisk forskning samt att öka kunskap om hur existerande metoder från nätverksanalys kan användas effektivt för webometrisk forskning. Resultaten från denna forskning och de utvecklade metoderna kan användas för snabba kartläggningar av diverse förhållanden mellan olika organisationer och företag genom att använda information gratis tillgängligt på webben.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary PhD Thesis Jan Pollmann: This thesis focuses on global scale measurements of light reactive non-methane hydrocarbon (NMHC), in the volatility range from ethane to toluene with a special focus on ethane, propane, isobutane, butane, isopentane and pentane. Even though they only occur at the ppt level (nmol mol-1) in the remote troposphere these species can yield insight into key atmospheric processes. An analytical method was developed and subsequently evaluated to analyze NMHC from the NOAA – ERSL cooperative air sampling network. Potential analytical interferences through other atmospheric trace gases (water vapor and ozone) were carefully examined. The analytical parameters accuracy and precision were analyzed in detail. It was proven that more than 90% of the data points meet the Global Atmospheric Watch (GAW) data quality objective. Trace gas measurements from 28 measurement stations were used to derive the global atmospheric distribution profile for 4 NMHC (ethane, propane, isobutane, butane). A close comparison of the derived ethane data with previously published reports showed that northern hemispheric ethane background mixing ratio declined by approximately 30% since 1990. No such change was observed for southern hemispheric ethane. The NMHC data and trace gas data supplied by NOAA ESRL were used to estimate local diurnal averaged hydroxyl radical (OH) mixing ratios by variability analysis. Comparison of the variability derived OH with directly measured OH and modeled OH mixing ratios were found in good agreement outside the tropics. Tropical OH was on average two times higher than predicted by the model. Variability analysis was used to assess the effect of chlorine radicals on atmospheric oxidation chemistry. It was found that Cl is probably not of significant relevance on a global scale.