448 resultados para Litchi chinensis Sonn.
Resumo:
陆地样带研究是国际地圈一生物圈计划( IGBP)全球变化研究中最引入注目的创新之一。目前,国际上已经设立了15条陆地样带,而且正在开展各项研究工作。现有关于陆地样带的研究报道多集中在环境梯度分析、气候变化对植被初级生产力的影响及环境变化与植被变化的对应关系等方面,而关于陆地样带环境梯度变化上植物种群生态学的研究尚未见报道。 本研究以东北样带为平台,研究北纬43。31' - 44041',东经125018’-115。31'范围内,即由湿润到干旱的环境梯度变化系列,羊草主要形态特征、种群密度、生物量、种子生产、生物量分配比例等变化规律及其与环境因子的相关关系,初步探讨了中国东北大尺度环境变化对羊草种群的影响及羊草对变化环境的适应规律。 在本研究的环境变化系列上,羊草种群外部形态的突出变化是种群植株高度由东至西沿降水量逐渐下降的梯度逐级递减,而且植株高度与生长季前期的降水量呈显著正相关关系。除旗叶外,羊草种群各叶片长度具有相似的变化趋势,即长春地区种群叶片长度远远大于其它种群,阿巴嘎旗地区种群叶片长度远远小于其它种群,其它8个种群叶片长度变化不大,呈平缓波动状态。除长春地区羊草叶片宽度显著大于其它种群外,其它9个种群间虽有一定的差异,但基本是处于波动状态。这说明羊草的各形态特征对该梯度环境变化的反映是不同的。 在该环境梯度上,羊草种群总密度、营养枝密度和生殖枝密度具有非常相似的变化趋势,均为由东至西呈先增后减的趋势,并且最大值都在长岭种马场地区。而且,无论是种群总密度,还是营养枝和生殖枝密度均与9月份平均温度显著相关,这是因为秋季高温对地上部分的营养物质向地下根茎转移及地下根茎芽的形成有利,丰富的物质积累和发育良好的地下根茎芽是翌年种群具有较高密度的保障。在本研究的10个种群中,除长春地区种群生殖枝分化率显著低于其它种群外,各羊草种群生殖枝分化率相对稳定,而且羊草种群生殖枝分化率与环境梯度上各环境因子间的相关性均不显著。 在本研究中,种群总生物量、营养枝生物量、生殖枝生物量和个体生物量等指标具有不同的变化趋势。表现为由东至西或由湿润到干旱,除生殖枝生物量在最东端的各种群中呈增加趋势外,种群总生物量和地上群体生物量(营养枝生物量和生殖枝生物量)均呈逐级盘低走势,而且干燥系数和生长季前期的降水量是决定总生物量和地上群体生物量变化的主要因素。地下根茎生物量表现为从湿润的长春市地区到半干旱的绍根地区呈缓慢盘低,而后随干旱程度的加重迅速增加,但至最干旱的阿巴嘎旗地区又迅速下降。在半干旱和干旱地区,植物根系生物量增加能使植物更有效地利用有限的水资源。羊草种群个体生物量的变化趋势基本一致,即除长春地区种群个体生物量远远大于其它9个种群外,各羊草种群个体生物量虽有所差异,但变化不大,基本水平波动状态。个体生物量的相对稳定是羊草能适应各种变化生境的重要保障,而且在该实验梯度上个体生物量的相对稳定是通过种群密度变化来调节的。 在本研究梯度上,虽然各种子生产指标有一定的变化,如锡林郭勒草原定位站种群和阿巴嘎旗种群的种穗长度、结实数和单位面积种子产量均较低等,但这些指标的变化与由东至西的降水量递减等气候因子变化是不一致的,如结实数、单位面积种子产量和种子重量等基本呈波动状态,只是在实验梯度的西端才有明显的下降。这说明在本研究的环境梯度系列上,环境因子对羊草种子生产有一定的影响,但最主要的影响可能是其自身遗传因素,这有待于今后的深入研究。 在本研究的环境梯度上,由东至西或由湿润到干旱的气候变化系列上,羊草种群根茎、营养枝、生殖枝和种子生物量分配比例呈现明显的规律性变化。最显著的表现是羊草种群根茎生物量分配比例随降水量的减少而逐渐增加。在水资源有限的生境下,大比例的根茎生物量分配能增加根系对地下水分的吸收,同时有利于物质和能量在根部的贮藏,这种机制能确保植物在干旱气候条件下生存。相反,羊草种群地上营养枝生物量分配比例由东至西逐渐下降,减少营养枝生物量分配比例可以降低营养枝水分蒸腾量,协调根部水分吸收和枝条蒸腾的关系,保持整个植物体的水分平衡。羊草种群生殖枝和种子生物量分配比例均呈两头低,中间高的变化趋势。这说明降水充足和严重干旱均不利于羊草有性生殖体的生产,半湿润和半干旱气候区是羊草种子生产的理想地域,这也可能是羊革能在半湿润和半干旱气候区大面积分布的原因。
Resumo:
草地在世界各种不同的气候带和土壤类型区均有分布,约占陆地面积的24%。尽管二十世纪中叶以来,人类通过各种措施,使氮素由大气圈进入生物圈的量已经翻了一翻,但是,草地生态系统由于没有得到足够的氮素补充,其生产力至少是季节性地受到氮素的制约。我国草原生态系统的退化与氮素匮乏已经引起了广泛重视。尽管一些研究者的工作已经涉及到氮素循环的一些方面,但是关于草原生态系统的氮素平衡过程的系统研究迄今尚未开展。地下器官中贮藏养分的积累是多年生牧草抵御不良环境条件的物质保障,碳水化合物是我国典型草原植物重要的贮藏营养物质。但是关于我国草原生态系统贮藏养分的研究还相当匮乏。值得一提的是,不合理的人类活动也加剧了草地生态系统氮素的损失,甚至对全球环境和人类健康产生了重要影响。为此,我们在中国科学院内蒙古草原生态系统定位研究站的羊草样地设计了氮素添加试验,采用15N稀释法对典型草原羊草群落的氮素吸收利用、氮素平衡进行了研究,并就氮素添加条件下,植物氮素利用与植物竞争的关系、氮素吸收分配与牧草生物产量与品质的关系进行了探讨。同时采用高效液相色谱对羊草群落植物贮藏碳水化合物的种类与含量进行了测定。 15N稀释法的试验结果表明:我国典型草原羊草群落吸收的氮素平均16.41%来源于肥料,83.59%来源于土壤。氮素添加不仅显著促进了羊草群落地上器官对肥料氮索和土壤氮素的吸收量,而且促进了地下器官对肥料氮素和土壤氮素的吸收量。生物量达到最大时,羊草群落吸收的氮素分配到地下器官中的比例平均为74.85%,分配到地上器官中的比例平均为25.15%。植物吸收的肥料氮素在地上和地下器官之间的分配比例约各占50%。 在我国典型草原羊草群落,植物对肥料氮素的回收率仅为31.61%,氮素添加显著影响羊草群落植物对肥料氮素的回收,随着氮素添加量的提高,地上和地下植物器官对肥料氮素的回收量均显著提高。凋落物的肥料氮素回收率为2.92%,地下凋落物的回收率显著高于地上凋落物。肥料氮素的土壤存留率为36.16%,主要分布在地表至40cm的土层范围内(>95%)。各土层存留的标记肥料氮素量均随着氮素添加量的增加而显著提高。肥料氮素的当季损失率为21.77%-43.38%。风险:收益分析表明,在本试验条件下,添加5.25gN/m2与28gN/m2的处理风险大于收益,添加17.5g/m2的处理风险最低,收益最高,在草原生态系统的管理中可以参考。 为了了解羊草群落植物的竞争能力是否对羊草群落植物的相对多度有影响,我们对不同盖度的10个物种的15N吸收速率、15N分配、植物组织氮素含量、单株生物量、根/冠比、氮素生产力等反映植物竞争能力的指标进行了测定和分析。发现向根系的氮素分配比例、根/冠比、和氮素生产力与植物的相对盖度显著正相关,向地上器官的氮素分配比例、氮素吸收速率与相对盖度呈显著负相关,而植物组织氮素含量、和单株生物量与植物相对盖度无关。 试验前,我们认为氮素吸收速率应该与植物的相对多度显著正相关,但是本试验发现却是显著负相关。这一结果说明,高的氮素吸收速率并不能代表较高的竞争能力,而是稀少植物能够与优势植物共存的一种生理机制。 氮素的吸收与分配显著地影响牧草的生物产量和品质。氮素添加提高了羊草生物量,促进了生物量向地上器官的分配比例,降低了向根系的分配比例,使根/冠比显著降低。氮素添加促进了羊草对氮素的吸收以及向茎叶中的分配比例,降低了向根系的分配比例,提高了羊草各器官的氮素含量和地上器官的蛋白质含量,对根系的蛋白质含量无显著影响。本试验条件下,氮素添加水平为17.5gN/m2时,羊草根、茎、叶生物产量均最高。与17.5gN/m2的处理相比较,添加28gN/m2的处理,羊草的生物产量以及牧草蛋白质含量均无显著差异。初步认为,本实验条件下,17. 5gN/m2是较为适宜的氮素添加量。 地下器官中贮藏养分的积累是多年生牧草抵御不良环境条件的物质保障,碳水化合物是我国典型草原植物重要的贮藏营养。采用高效液相色谱(HPLC)对羊草群落地下器官的贮藏性碳水化合物进行了分析。结果表明,羊草群落地下贮藏碳水化合物种类主要包括甘露糖醇、果聚糖、蔗糖、葡萄糖和果糖。其中甘露糖醇是最主要贮藏碳水化合物,约占60%;其次是果聚糖,约占30%。氮素添加量对羊草群落地下贮藏碳水化合物有显著影响。在0~50 g NH4N03. m-2.yr-1范围内,随着氮素添加量的增加,总糖、果聚糖、甘露糖醇的含量均逐渐升高。氮素添加时期对羊草群落地下贮藏碳水化合物含量亦有显著影响。7月初(雨季)添加氮素比4月份(牧草开始返青)更有利于牧草地下贮藏碳水化合物的积累。 对羊草根茎中的贮藏性碳水化合物的测定结果表明,羊草根茎中的贮藏碳水化合物组分主要包括果聚糖、甘露糖醇、蔗糖、葡萄糖和果糖。其中果聚糖是最主要贮藏碳水化合物,约占60%:其次是甘露糖醇,约占20%。氮素添加量对羊草根茎中的贮藏碳水化合物有显著影响。在0~17.5 g N/m2范围内,随着氮素添加量的增加,总糖、果聚糖、甘露糖醇的含量均逐渐升高。氮素添加时期对羊草根茎中的贮藏碳水化合物的含量亦有显著影响。在7月初添加氮素比4月份添加氮素更有利于贮藏碳水化合物的积累。
Resumo:
自工业革命以来,大气的C02浓度以前所未有的速度增加,已经由280μmol mol-1升高到了360μmol mol-l。据预测,到下个世纪中/末期,C02浓度将为目前的二倍。C02浓度升高及其引起的全球气候变化必将影响到植物的生长发育,进而对整个生态系统产生巨大影响。因此,有关C02浓度升高对各类生态系统的影响的研究引起了广泛关注,成为近年来的研究热点。早期的研究多数集中于考察C02浓度升高对植物个体水平生长发育的影响。然而,高C02对植物的效应严重依赖于具体物种和具体环境条件,使得基于由短期盆栽实验获得的研究结果不能够有效地预测自然生态系统的行为。因此,长期、原位处理实验越来越受到重视。由于原位研究的难度较大,目前这方面的研究还不是很多。有限研究结果显示,由于生境条件和种间关系方面的巨大差异,自然生态系统对C02浓度升高的反应迥异。 草原生态系统由于C02浓度控制上比较容易实现,而且其物质循环相对较快,因而一直是C02富集实验研究最多的一类植被,生态系统水平的研究更是如此。然而涉及的区域和草原类型并不多,不足以进行可靠预测。目前,关于C02升高效应,研究比较系统的草原生态系统主要集中在:美国Kansas的高草草原、美国California的一年生草原、瑞士西北部的石灰质草原、美国Colorado的矮草草原和一些牧场。我国总土地面积的40%为草地,类型丰富,然而相关研究不多,尤其是对自然生态系统的原位研究几乎为空白。 为揭示C02浓度升高对羊草草原生产力和碳平衡的效应,我们在中国科学院内蒙古草原生态系统定位研究站的永久羊草样地开展了两年的C02倍增实验(2001,2002)。在羊草样地选择相对均匀地段设置12个开顶式气室(直径1.8m),每个气室内分成4个小样方(0.5m×0.5m),其中6个气室在生长季给予加倍C02处理(约600μmol mol-l),另6个气室不补充C02(约300μmol moI-l)。地上部分用收割法取样,分种记录数量、高度和重量等指标,地下部分取样用环刀法。用Li-cor6400光合系统测定群落光合和呼吸速率。野外实验结束后,统一分析植物和土壤样品中的C、N等元素含量。另外,在内蒙古草原站院内设置了两组桶培实验,一组是取自羊草样地的带苗原状土,一组是取自羊草样地的混匀土,种上冰草(Agropyron cristatum)、紫花苜蓿(Medicago sativa)和无芒雀麦(Bromus inermis)的种子。2组桶培实验分别用两个水分梯度和两个C02梯度处理。水分处理分别为:浇水处理——每4天浇lOOOml水,相当于平均降雨量的160%;干旱处理——持续干旱,适时补水以保持植物不萎蔫,共浇水4000ml水。C02处理和取样方法与样地原位实验相同。主要研究结果和结论如下: 1)两年的C02加倍处理没有使羊草草原的生物量、植物种和功能型组成发生显著改变,桶培实验中,浇水处理显著促进了植物生长,原状土植物、种子苗实验的冰草和无芒雀麦对C02加倍处理同样不敏感,而种子苗实验的豆科植物紫花苜蓿在C02加倍处理下生物量显著提高。以上结果显示,由于水分和养分(特别是N)的限制,以及优势植物对C02的相对不敏感,C02浓度升高对羊草草原地上生物量和结构的效应相对不大。 2)羊草草原的根垂直分布在加倍C02条件下发生显著改变,但根生物量对C02加倍处 理相对不敏感。在4次取样中只有一次对C02加倍处理表现出显著变化,根长的变化与根生物量的变化不完全一致,根的比根长在加倍C02条件下增加。根垂直分布的变化趋势与降雨的时间分布相适应,干旱少雨时期C02使下层根量增加,多雨时期C02则使上层根量增加。以上结果显示,根的空间分布比根生物量对C02加倍处理更敏感。水分是根空间分布变化的驱动因子,加倍C02条件下,根空间分布的变化趋势倾向于优化对水分的充分利用。 3)加倍C02处理使羊草草原的群落光合速率显著提高,群落呼吸速率显著降低,因而使群落碳净输入量增加。土壤碳贮量占羊草草原碳总贮量的70%以上,碳总贮量及其组分(包括地上碳贮量、根碳贮量、土壤碳贮量)在两个C02浓度处理之问均没有显著差异。另外,加倍C02处理使羊草草原群落及其优势植物羊草的c:N比增加。以上结果显示,在加倍C02条件下羊草草原的碳净输入量增加,这意味着在未来高 C02条件F,羊草草原将作为碳汇对大气C02起反馈调节作用。其碳贮量对加倍C02 处理的不敏感与许多以前的研究结果相似,一般认为是由于土壤碳贮量本底太大, 掩盖了C02效应,这还有待于更长期原位实验的证实。羊草草原群落c:N比在高C02 浓度下的变化将影响凋落物降解、N素循环和动植物营养关系等,进而对生态系统 功能产生深远影响。
Resumo:
陆地样带是国际地圈——生物圈计划(IGBP)研究中最引入注目的创新之一。目前,国际上已经设立了15条陆地样带,研究内容涉及环境梯度分析、气候变化对植被初级生产力的影响及环境变化、土地利用等与植被变化的对应关系等。沿该陆地样带分布较广的关键种生理适应性等方面对影响其生理功能形态结构的研究较少,特别是茎、叶等组织功能研究较少。 中国东北样带(NECT)是全球陆地样带的重要组成部分,多年来已开展了大量深入系统的研究工作,已成为我国生态学、地学等学科的重要研究平台。本研究以中国东北样带中西段广泛分布的重要关键种——羊草(Leymus chinensis)为研究对象,分析了羊草茎、叶显微结构的生态可塑性及其与水分利用效率的关系,进而阐述了羊草适应不同生境条件,特别是适应水分变化的机制,为揭示羊草及其种群、群落乃至以羊草为优势种或建群种的草地生态系统在全球变化背景下的发展趋势提供理论依据。 基于2001年7~8月第3次中国东北样带考察资料,采用高精度Olympus显微镜及C同位素分析技术(δ13C判别值),结合在野外取样过程中测定的样地土壤含水量和海拔高度,以及近十年各样地年降水量和年均温度气象资料,分析了羊草茎、叶显微结构和水分利用变化与环境因子的关系,以及以羊草为建群种或共建种的无牧和放牧样地群落生物量、物种多样性和植物功能型组成变化与环境因子的关系。 结果表明:羊草叶片表面及内部主要显微结构特征参数各样地间有不同程度的差异,其中气孔密度与降水量呈线性正相关。代表气孔开张程度的气孔长度和宽度变化与土壤含水量呈线性相关。叶表面角质层厚度与海拔高度变化关系较大,并以上表面角质层厚度变化最为明显,主要受海拔高度升高引起的紫外线照射增强的影响。运动细胞带宽度占叶面积比虽然与各环境因子关系不很密切,但温度变化的影响较突出,这一显微结构调整与气孔变化构成干旱——高温调节机制。叶片表面毛茸的变化也是非常显著的,但与各环境因子关系密切程度均不大,可以肯定的是在土壤水分状况较好的生境下羊草叶片表面毛茸密度及长度明显增加,而一些干旱生境中常表现为毛茸较少、较短,个别样地基本没有发育较好的毛茸。总体上看,羊草叶片对干旱化的形态结构调整以气孔密度和开张程度的变化最大,是羊草叶片调节水分利用效率的重要适应性生态可塑性调整。 与叶片相比,羊草茎横切面结构特征的变化与各环境因子关系的显著性不是很强,但各样地间的差异是比较显著的,许多结构调整可能与土壤养分条件的变化有一定关系,如茎秆粗度变化、基本薄壁组织厚度和中央空腔(髓腔)直径的变化等,但本研究未能涉及这方面内容,有待于进一步研究。 羊草水分利用效率与降水量和土壤含水量呈显著的负相关关系,即随降水量和土壤含水量增大羊草水分利用效率明显降低,蒸腾耗水增大,这一生理变化与显微结构的调整关系密切,特别是气孔密度与气孔宽度在水分较差生境中明显减小,从而有利于适应干旱环境,减少耗水量。表现比较突出的是非地带性林西样地,其降水量处于10个样地的中等偏低水平,但其δ13C判别值较低,达-26.063‰,与降水量较大的长岭、双辽样地几乎相当,并比相邻的林东和克旗样地明显低,其气孔密度、开张程度及叶脉后生导管直径均较高(大),但其土壤水分状况是最好的样地之一,尽管取样时不幸遇到雨天,但从其群落类型——羊草杂类草草甸,并伴生许多中、湿生种类上看,其生境的湿润程度是毋庸置疑的。这一非地带性样地中羊草结构的变化从另一侧面反映了羊草显微结构调整对水分环境的适应。δ13C判别值是一个非常敏感的参数,在分析植物水分利用效率及其相关领域的研究中应深入利用。 群落植物功能群组成与环境因子及群落初级生产力关系研究结果表明,丛生禾草生长型功能群、旱生和中旱生植物水分生态类型功能群具有明显的地带性变化规律,并与群落生物量变化关系密切,变异性较低,占群落生物量比例较大,可考虑作为植物功能型组合对无牧样地植被变化进行评估和预测。在放牧影响下,C4植物光合类型功能群呈现明显的地带性变化,并在群落中所起的作用明显增强,亦可考虑作为评估和预测植被变化的植物功能型组合。无牧样地与放牧样地研究结果均表明,按Raunkiaer划分的地面芽、地下芽、地上芽和一年生植物生活型功能群,其地带性变化不明显,或变异率高,或占群落生物量比例小,不宜作植物功能群组合对植被变化进行评估和预测。
Resumo:
1.羊草对土壤水分的响应与适应 羊草生物量随着土壤水分含量的降低逐渐降低,后期的降低幅度远远大于前期。干旱促进鞘分配增加,增加了在处理初期的根的分配,但到后期则使之减少,表明羊草在经历较长期的持续干旱后通过增加根部的比重来提高抗旱性的能力逐渐降低。轻度(LD)、中度干旱(MD)对羊草叶片相对含水量(RWC)、气孔密度、光合参数、荧光猝灭参数和群体日交换速率无显著影响,但严重土壤干旱使它们显著降低。 羊草叶片的可溶性蛋白质以中度干旱的最高,严重干旱(SD)特别是极严重干旱(VD)使之显著降低,游离氨基酸含量(FAA)的变化与之相似。随着土壤水分含量的降低硝酸还原酶(NR)活性逐渐下降,而谷氨酰胺酶合成酶(GS)的活性变化则是LD和MD使之分别增加了25.75%和12.22%,SD和VD则分别减少了8.21%和28.72%,说明了NR的活性变化对土壤干旱较敏感,而GS的活性则对适度的干旱有一定程度的适应性。LD处理没有增加天冬酰胺酶(AE)和内肽酶(EP)两种酶的活性,但MD、SD和VD使两种水解酶的活性显著增加,说明轻度土壤干旱对蛋白质和氨基酸的分解作用有稍降低作用,但随着土壤干旱程度的加剧,又极大地促进了这个分解过程。严重和极严重土壤干旱显著降低了叶片的总核酸含量和RNA的含量,暗示严重程度的土壤水分胁追限制了核酸的合成代谢,加强了其分解代谢,严重土壤干旱还显著增加了丙二醛(MDA)的含量,说明提高了羊草叶片叶肉细胞的膜质过氧化水平。 2.羊草对土壤干旱和复水的响应与适应 羊草受到适当的干旱驯化可促进生长,但过长时间的干旱处理,复水后未能补偿损失的生物量和叶面积。羊草叶片的气孔密度以中度干旱持续期(Mtd)处理的最高,其次是短期干旱持续期( Std),二者分别比没有经过土壤干旱的处理(对照)增加了14.90%和3.61%,但长期干旱持续期(Ltd)却使之减少了27.19%,气孔指数亦有类似的趋势。复水增加羊草叶片的光合速率、气孔导度、蒸腾速率,近期复水的激发效应明显大于前期,而对夜晚的呼吸作用影响不显著。水分利用率( WUE)的日变化动态呈“M”字型曲线,以Mtd的WUE值的峰值最大,以三次曲线拟合WUE的24小时日进程最佳。叶绿素荧光动力学的分析结果表明,复水,特别是最近的复水可显著改善羊草叶片的PS II性能,增加叶绿素a,b的含量及其比值,提高碳酸酐酶的活性。 羊草含氮量以叶片的最高(4.40%),根部的最低(1.99%),枯叶、茎鞘和根茎的含量差异较小(2.26~4.40%)。所有器官的含氨量对土壤水分处理的响应基本一致,以对照处理的最低,Std的最高。各器官的碳氮比都是以对照的最高,而其它土壤水分处理相差不显著,给于一定时间的土壤干旱处理可使羊草获得较强的氨代谢能力。Std的氮素总拥有量最多,和对照相比,绿叶、枯叶、茎鞘、根茎和根分别提高了35.58、26.88、23.49、31.66、40.75%,而Ltd的含氨总量呈下降趋势,说明短时间的土壤水分干旱处理可明显促进羊草各器官和植株的氮素积累,而较长时间的土壤干旱则不利于氮素的积累。羊草各器官氮素绝对量占整株的百分比从大到小依次为:绿叶(42.42-44.00%)、根茎(20.13—23.69%)、根(15.43~17.18%)、枯叶(10.07~11.30%)和茎鞘(7.27~8.67%),表明叶片的氮素存量占植株的一半以上。Mtd处理增加了叶片的氮素贡献率,减少了茎鞘和根茎的贡献率,有利于加强叶片的光合性能。 以中度干旱持续期(Mtd)处理的叶片可溶性蛋白质含量、谷氨酰胺合成酶(GS)活性、RNA含量为最高,但中长期的土壤干旱处理再复水后则显著降低了羊草叶片内肽酶(EP)的活性和MDA的含量,说明给于一定时间的土壤干旱处理可使羊草叶片保持较高的蛋白质代谢水平,降低膜脂过氧化水平。 3.羊草对昼夜温差与土壤水分交互作用响应与适应 昼夜温差减少使单株羊草的生物量降低21.3%,分蘖和根的生物量减少,而鞘的生物量稍增加,显著降低了严重和极严重条件下的生物量。温差缩小降低了分蘖和根的投资比例,减少植株的地下部分生物量,而增加新叶、鞘和分蘖光合产物的比例,表明温差的减少将抑制光台产物向地下部分的转移。温差减少对充足土壤水分和轻度干旱处理的放射性比强影响较小,但减少了其它3种干旱处理的放射性比强。其原因主要是减少了植株鞘、根和根茎的放射性比强,显著增加了饲喂叶和心叶的放射性比强,表明温差的缩小阻止了“源”的光合产物向“库”的转移,降低对分蘖和根的投资,不利于羊草对干旱逆境的适应。 昼夜温差缩小使羊草叶片的气孔密度降低4.01%,而且减少了土壤干旱对气孔密度的影响。较高的昼夜温差和较低的昼夜温差相比,羊草叶片的光合速率和WUE分别增加了7.37%和20.09%;而气孔导度、胞间CO2浓度和蒸腾速率分别降低了14.03%、2.57%和10.80%。昼夜温差减少降低了土壤干旱的δ13C值,说明可能减少处在干旱条件下的植株WUE,暗示减小昼夜温差不利于增大羊草叶片对土壤水分亏缺的耐性。昼夜温差的缩小主要影响了下午羊草群体的CO2交换速率,增加了对照、LD和MD处理的夜间呼吸速率,降低了尤其是显著降低了在土壤缺水条件下的CO2昼夜净交换量,而在两个昼夜温差条件下都是以LD的最高。 昼夜温差缩小影响氮素含量在羊草各器官中的氮素分配,降低了叶片和茎鞘中的氮素百分比含量,但增加了根茎和根中的氮素含量。在较小的昼夜温差条件下,LD显著增加了叶片的氮素含量,但其它土壤水分处理影响不显著,在较大的昼夜温差条件下,亦是LD显著增加了叶片的氮素含量,但MD也使其显著增加。昼夜温差缩小增加了叶片和茎鞘的碳氮比,降低了根茎和根的碳氮比,使叶片在中度和严重土壤水分胁迫时无变化,降低了响应于土壤水分变化的调节弹性。 昼夜温差缩小使羊草叶片可溶性蛋白质降低了16.14%。LD和MD显著促进叶片可溶性蛋白质含量增加,SD和VD都显著地降低了羊草叶片的可溶性蛋白质含量。昼夜温差缩小有使羊草叶片游离氨基酸降低的趋势,主要是降低土壤干旱条件下的游离氨基酸含量,虽然昼夜温差缩小稍增加了可溶性耱的含量(4.68%),但使土壤干旱激发效应变得不显著,表明温差的缩小降低了叶片中渗透调节物质的积累,不利于羊草抗旱性的提高。昼夜温差缩小显著降低了羊草叶片的NR、GS和谷氨酸脱氢酶(GDH)的活性,在较小昼夜温差条件下几乎看不出土壤水分降低的激发效应,而在高温差下则明显看出LD的激发效应。昼夜温差减少加强土壤干旱对天冬酰胺酶和内肽酶活性的影响,加强了蛋白质和关键氨基酸的分解作用,提高了叶片的膜脂过氧化水平,不利于羊草对干旱的适应性响应。 在土壤水分充足条件下,昼夜温差缩减对羊草叶片气孔形态的影响不明显,但可以看出温差较大时有较多的星状蜡质覆于气孔表面及其周围,这可能是由于夜间温度升高后植物为了减少水分的散失而采取的一种适应性策略。在本实验条件下,中度和严重土壤水分胁迫使气孔变得更加凹陷,气孔更加坚挺,体现了对土壤干旱的适应性反应。对羊草叶片叶肉细胞超微结构的观察表明,昼夜温差对土壤水分充足时的超微结构影响不显著,但在严重土壤干旱条件下,昼夜温差缩减似乎减少了叶绿体中的淀粉粒,加速了叶绿体和线粒体膜的裂解,表明昼夜温差缩减加大了严重土壤干旱对羊草叶片叶肉细胞超微结构的负面影响。 4.羊草对温度和土壤水分交互作用的响应与适应 温度升高使羊草叶片气孔导度和蒸腾速率增加,使光合速率(A)和水分利用率( WUE)降低。土壤干旱和高温均导致最大光化学效率、量子产额和光化学荧光猝灭系数降低,使非光化学荧光猝灭系数升高。土壤干旱减少了羊草幼苗的生物量,却显著增加了根的贡献率和根冠比,而高温使二者显著地降低。在本实验条件下,直到极端干旱才显著降低了羊草叶片的A和WUE,而其他的水分处理影响不显著。土壤干旱使得叶片中的含氮量显著降低:温度对叶片氮含量无显著影响,但却显著地降低了根中的氮含量,尤其显著增加根与叶片氮含量的比率。高温加强了干旱对光合性能的影响,表明高温降低了羊草对干旱的适应能力。 温度过低或过高都对叶片保持高水平的可溶性蛋白质不利,温度过高还削弱了土壤水分亏缺对叶片中游离氨基酸的激发作用。水分梯度对20℃时的GS活性无显著影响,但LD促使26℃和29'C下的GS活性增加,MD以上强度的土壤干旱都显著降低了23℃以上温度尤其是29℃和32℃时的GS活性,表明高温和干旱的协同效应对谷氨酰胺的合成不利。高温增加了AE和EP的活性,加强了土壤干旱对羊草叶片蛋白质和氨基酸分解的促进作用,在一定的土壤水分条件下,高温对RNA的合成作用增强,认为这是对高温胁迫的一种适应性响应。 随着温度的升高羊草叶片中的可溶性糖含量逐渐增加,土壤干旱亦增加了其可溶性糖的含量,但至极端干旱时则使之降低。在20℃下,土壤水分对羊草叶片的可溶性糖的含量无显著影响,在23—32℃温度条件下则是土壤干旱增加了其值,但至VD时则使之显著降低。不同温度条件下,土壤水分对羊草叶片的MDA影响不同,在20℃下,无显著影响,在23和26℃下,SD和VD使MDA稍升高,但在29和32℃条件下使之显著增加,说明温度升高加强了土壤干旱所引发的增加叶片膜质过氧化水平的负面影响。 5.柠条和杨柴对CO2浓度倍增和土壤水分交互作用的响应与适应 土壤干旱使拧条和杨柴的生物量在倍增CO2浓度条件下比在正常浓度条件下降低幅度更大。CO2浓度倍增较大地促进了充足水分条件下的植物生长,而对干旱条件下的生长促进作用则较小。无论在中度条件下还是在严重干旱条件下,两种优势植物均是在倍增CO2浓度条件下增加的根冠比幅度较大;无论在中度条件下还是在严重干旱条件下,且无论正常CO2浓度条件下还是在倍增CO2浓度条件下均是杨柴增加的幅度大。CO2浓度倍增主要增加了水分充足和MD的单位叶面积质量(LMA),但反而降低了严重干旱的LMA。 CO2倍增使δ13C降低,但土壤干旱使之增加。用“库”(根)中的δ13C值对“源”(叶片)中的δ13C作图,可以用以评价碳分配以及“库”中新增生物量,两种沙生灌木叶片与根部的δ13C值呈极显著线性关系,杨柴的斜率大于柠条的,表明前者叶片与根部在光合产物分配上具有较高的可塑性,这和干旱条件下杨柴的根冠比增加相关联。杨柴的“源库”调节特性反映了对逆境具有较高的耐性。 CO2倍增使柠条和杨柴叶片含氮量分别降低了10.40%和5.06%,土壤干旱有使柠条叶片含氮量增加的趋势,但中度干旱没有增加羊柴叶片的含氮量。CO2倍增使叶片的碳氮比显著增加,而干旱使之降低。CO2浓度倍增降低叶肉细胞质膜的过氧化产物MDA的含量,干旱亦使叶片的MDA含量增加。叶片含氮量与MDA呈显著正相关,表明CO2倍增有保护叶片免受土壤干旱的作用,但干旱的负面影响是CO2倍增效应所难以弥补的。 CO2倍增降低了柠条叶片的可溶性蛋白质的含量,但在干旱条件下降低幅度较小,说明CO2浓度升高条件下可减轻干旱影响叶片中可溶性蛋白质的强度,体现了CO2浓度倍增对植物的抗旱性有利的一面。CO2浓度倍增使土壤水分充足条件下的柠条叶片中游离氨基酸含量降低17.24%,却使SD条件下增加10.78%,表明土壤干旱导致的叶片游离氨基酸含量的增加平衡了CO2升高造成的降低。在充足土壤水分和MD条件下,CO2浓度倍增对核酸总含量和RNA含量有稀释效应,但严重干旱条件下,CO2倍增提高了核酸总含量和RNA的含量。
Resumo:
氮素是植物光合生产的决定性因素,尤其是在沙地草地生态系统中,氮素贫乏往往限制植物的生长发育。因此,研究沙地植物光合作用与叶片N含量之间的关系,以及不同植物功能型氮素利用效率,有助于理解不同植物资源利用效率的差异。以浑善达克沙地分布的80种植物为研究对象,对不同生境(固定沙丘、丘间低地和湿地)、不同生活型(乔、灌、草)、不同光合途径(C3和C4)以及豆科和非豆科植物等功能型进行研究,结果表明:无论在单位叶面积水平还是单位干重水平上的叶片氮含量,均与光合速率成极显著正相关,但单位氮素的光合利用效率在不同生境以及不同功能型之间差异很大;光合氮素利用效率表现为:湿地植物>沙丘>丘间低地植物;草本植物>灌木>乔木;C4草本>C3草本植物,非豆科植物>豆科植物。 为了验证浑善达克沙地豆科植物是否比非豆科植物具有更高的光合潜力,我们比较研究了3种优势豆科植物小叶锦鸡儿(Caragana microphylla)、木岩黄芪(Hedysarum fruticosum var. lignosum)、披针叶黄华(Thermopsis lanceolata)和2种非豆科植物羊草(Leymus chinensis)和黄柳(Salix gordejeviii),结果表明并非所有豆科植物都比非豆科植物有着显著高的光合速率,仅木岩黄芪表现出较高的光合速率,其它两种豆科植物的光合速率和羊草、黄柳的差异并不显著(P>0.05),甚至低于后者,这是因为氮素利用效率(PNUE)在其中起关键作用,通过对影响PNUE的几个主要因素进行分析得出:叶绿素对光能的吸收、光化学转换效率和CO2分压并不是构成豆科和非豆科植物PNUE差异的主要因素,而Rubisco羧化效率决定了所实验的5种植物对氮素利用效率的高低。 木岩黄芪在浑善达克沙地的沙丘上为优势种,甚至成为流动沙丘的先锋种。除了其显著高的氮含量外,对沙丘胁迫生境的光合适应性是我们关注的另一个重点。通过对木岩黄芪和其伴生种黄柳的光反应曲线以及光合日动态的研究,发现木岩黄芪具有显著高的光合速率、水分利用效率和PSII 光化学效率,其忍受中午强光和高温的能力较强(即“光合午休”现象不明显)。另外,该物种还表现出了显著高的光饱和点和低光补偿点。 对木岩黄芪的模拟降雨试验结果表明:气体交换参数以及叶绿素荧光参数均受到干旱和模拟降雨的影响,其中气孔因素和非气孔因素共同决定了干旱条件下木岩黄芪光合速率的降低;但降雨解除干旱后,气孔导度恢复较快,而PSII 潜在活性和PSII 光能转换效率的恢复却比较缓慢。在0-15mm的降雨量范围内,随降雨量的增加各项生理指标不断升高,但大于15mm的降雨量对木岩黄芪影响不大,因此木岩黄芪可被视为低耗水型植物。 对木岩黄芪光合酶的研究结果表明,其C4光合酶的活性很高,磷酸稀醇式丙酮酸羧化酶(PEPcase)、NAD-苹果酸酶(NAD-ME)、NADP-苹果酸酶(NADP-ME)、NAD-苹果酸脱氢酶(NAD-MDH)、NADP-苹果酸脱氢酶(NADP-MDH) 和丙酮酸磷酸双激酶(PPDK)等酶的活性,在整个生育期内为黄柳的5倍以上,但稳定性碳同位素测定结果却表明木岩黄芪为C3植物。因此,我们认为C3豆科植物木岩黄芪体内可能存在着C4光合途径,这种机制使得其对于流动沙丘的胁迫环境有着很强的适应性和很高的资源利用效率。
Resumo:
第一部分:内蒙古锡林河流域草原植物种群和群落热值的时空变异研究 热值的研究是评价生态系统能量固定、传输和转化的基础,也是评价植物光合作用效率和植物营养值的有用参数。同种植物热值会随着植物部位、光照、养分条件、季节、土壤类型和气候条件的不同而发生变化。不同的种类和类群之间热值也存在差异。本项研究以内蒙古锡林河流域中段草原植物群落为对象,研究了植物种群和群落热值的时空变异规律。 对内蒙古羊草草原群落不同植物种群热值的时问动态研究结果表明,42种植物地上部分的热值在13.16土1.14 kJ.g-l和18.14土0.53 kJ.g-1之间变动,所有物种的平均热值为16.90土0,84 kJ.g-1,种间变异系数4.9%。小叶锦鸡儿(Caraganamicrophylla)具有最高的热值。禾草的平均热值高于杂草。根据生活型和生长型,草本物种被进一步分组,热值从高到低的排列顺序为:高禾草>豆科植物>矮禾草>其余杂草>半灌木>一二年生植物。 主要植物种群地下部分热值的分布范围为15.05-16.41 kJ.g-1。其中根茎型草地下部分热值较高。不同种类植物地下部分热值差异并不与地上部分一致。根茎型禾草地上、地下部分热值差异较小,而须根型植物差异较大。不同种群的植物地上部分热值随植物物候期的不同而波动,其变化规律是与植物种群本身的生物学特性相联系的。不同植物种群热值的年际波动规律有所不同,羊草(Leymuschinensis)、大针茅(Stipa grandis)和洽草(Koeloria cristata)的年际热值波动相关显著,但与生长季降水量和生长季累积日照时数之间无明显相关性。在某种程度上,植物热值的种内变化反映了植物生长状况的差异。 42种植物的热值和它们在群落中的相对生物量存在显著正相关关系。表现为优势种(17.74 kJ.g-1)>伴生种(17.24 kJ.g-l)>偶见种(16.65 kJ.g-1)。高热值的植物更具竞争力,在群落中通常占据优势地位,而低热值的植物竞争力通常较弱,构成草原群落的伴生种或偶见种。 以内蒙古锡林河流域3个草原群落类型(羊草典型草原,大针茅典型草原,羊草草甸草原)的放牧退化梯度系列(包括未退化,轻度退化,中度退化和重度退化4个强度)为研究对象,对主要植物种群和群落热值随草原类型和退化梯度的空间变异规律及热值与其他群落和土壤性质的相关性进行了研究。 结果表明,研究区出现的60个植物种平均热值为17.25土0.92 kJ.g-1,变异系数5.4%.热值大于18.00 kJ.g-1的高能植物包括3种优势高禾草(羊草、大针茅和羽茅(A. sibiricum))和一些有毒植物,热值小于17.00 kJ.g-1的低能值植物包括多数一年生杂草;热值在17.00-18.00 kJ.g-1之间的中能值植物包括大多数多年生杂草和矮禾草。 按照生活型分类,灌木的热值最高,多年生禾草显著高于一二年生植物,半灌木和多年生杂草介于二者之间。按照水分生态类型分类,旱生植物、中旱生、旱中生和中生植物之间在热值上没有明显差异。不同科之间热值存在显著差异,禾本科、豆科、菊科植物热值较高,藜科植物平均热值最低。 二因素方差分析结果表明,主要优势物种热值在不同草原类型之间存在显著差异,表现为羊草草甸草原>羊草典型草原>大针茅典型草原。对于大多数优势禾草,热值没有随退化梯度发生明显变化,洽草(K. cristata)、冰草(A.ctistatum)和所有优势杂草随退化程度的增强热值趋于下降。对于大多数优势物种,热值随不同草原类型的空间变异大于放牧退化所导致的空间变异。 不同草原类型的群落热值为羊草草甸草原>羊草典型草原>大针茅典型草原,群落平均热值表现出随退化强度的增加而下降的趋势,这主要归因于沿退化梯度不同物种构成比例的变化,即随退化程度的加剧,高能值植物在群落中的比例下降。其次是特定物种热值随退化梯度的变化。在同一草原区,放牧对群落热值的影响大于立地条件之间的差异。 群落和主要物种热值均表现出与某些群落特征和土壤性质的相关性。 关键词:内蒙古,锡林河流域,羊草草原;物种和群落热值,时空变异,退化梯度,草原类型,土壤性质 第二部分内蒙古羊草草原17年刈割演替过程中功能群组成动态及其对群落净初级生产力稳定性的影响 基于17年的野外实验数据,研究了内蒙古羊草草原群落刈割演替过程中的功能群组成动态,探索功能群组成变化与群落净初级生产力(ANPP)之间的关系,分析结构参数怎样影响功能参数。结果显示:在17年的割草演替过程中,群落的结构与功能均发生了变化。随着羊草群落刈割演替的进行,群落的功能群组成发生了显著变化,根茎禾草在群落中的优势地位相继被一二年生植物,高丛生禾草,矮丛生禾草所取代。到17年末,群落变成根茎禾草,矮丛生禾草,高丛生禾草共同建群的群落。在对照群落中ANPP与年降水量显著相关,但在刈割群落中二者则不相关。年降水量解释对照群落ANPP变异的62%,而连年的刈割干扰则是刈割群落中ANPP动态的主要驱动因子。群落净初级生产则显出对刈割干扰的抵抗能力,在刈割干扰的前几年,依靠群落内功能群组成的不断调节,保持相对稳定的水平,当刈割进行5年之后,群落结构的变化积累到一定程度,净初级生产迅速下降到一个较低的水平,此后依靠群落结构的不断调节来维持这一功能水平。因此,群落结构是以渐变的方式改变的,而群落功能的下降则是以跃变的形式完成的。群落依赖于结构的不断调整来保持功能的相对稳定,但结构变化到一定程度也会导致功能的衰退。 关键词:内蒙古,羊草草原;刈割演替;功能群组成;净初级生产;群落;稳定性
Resumo:
克隆植物具有多种不同于非克隆植物的生长和繁殖策略。本研究首先综述了这些生长与繁殖策略之中,与我们的实验研究相关的尤其是对于去叶干扰适应策略的四个方面,包括克隆整合、克隆分株大小与密度之权衡( tradeoff)过程、碳水化合物贮备与利用、营养繁殖和芽种群(bud population)调节等。预测克隆植物选择什么样的对策以及某种对策发生作用的条件及程度如何,对克隆植物生态学研究者来说,将是富有挑战意味的课题。 羊草(Leymus chinensis (Trin,) Tzvel.)是禾本科的一种多年生根茎型克隆植物,常常处于由放牧或刈割造成的去叶干扰( defoliation)的胁迫下。在我们的第一个实验(2002年)中,考察了去叶干扰和根茎切割( rhizome severing)是否影响根茎本身和分株地上部分的生长、以及营养繁殖芽的数量特征。同时我们检验如下的假设:直接受到去叶干扰的分株除了会受益于可能的补偿作用之外,还会受益于克隆整合作用,即与之保持根茎联系的未受去叶处理的分株将转移碳水化合物或养分给受去叶干扰的分株,使之得以尽快恢复光合组织。实验结果显示:单次去叶干扰影响根茎生长和芽的产生,而对地上部分的生长影响甚微。只有重度去叶干扰才显著影响营养繁殖芽的产生,而轻度去叶干扰作用不明显。所以,当去叶强度不大时,补偿作用机制将弥补植物由于去叶干扰而受到的损失。我们的实验并未检测到克隆整合的发生,可能的原因是本实验持续的时间不足够长或者是由于根茎中的碳水化合物贮备在去叶干扰发生后发挥了作用,缓解了去叶干扰对羊草分株生长及芽生产的所造成的冲击。 在第二个实验(200 3年)中,为了考查相继数次的去叶干扰是否能够启动羊草分株间的克隆整合,以及启动克隆整合所需达到的去叶干扰的频次,我们将实验样方设计为两部分:核心区( Core section)和外围区(Periphery section)。不同频次的去叶处理(0去叶,作为对照; 1次去叶;3次去叶;5次去叶)仅施加于实验样方的核心区。结果表明,经历3次和5次去叶处理的样方外围区的生物量及水溶性碳水化合物( wsc)含量均明显少于经历1次去叶处理及0去叶处理的样方外围区,这意味着克隆整合在3次去叶和5次去叶两种处理中发生了,而在其它两种处理中没有发生。此外,分株的大小一数目之权衡可能在基株(genet)水平上发生,因此,一个克隆植物基株,当部分分株受到去叶干扰后,将增加其分株数目,但优先增加未受到去叶干扰部分的分株数目。我们将羊草的这种行为视为克隆基株试图逃避干扰的“逃逸行为”( escaping behavior)。 同时在实验中,我们监测了实验样方核心区分株的wsc浓度,目的是查明羊草枝条与根茎中wsc浓度随时间的变化格局及其对去叶干扰的响应,意在发现羊草枝条地上、地下部分和根茎中wsc浓度的时间变化之间的联系。在生长旺季,对照处理(即O去叶处理)的wsc浓度显著降低,这是由于植物在此时期的高生长速率和高呼吸速率所致;相比之下,其它经历去叶干扰的三个处理中羊草wsc浓度降低不如对照处理那么明显和迅速,甚至在高频次去叶处理中还有所上升,其原因大概是由于去叶而使叶面积减小,引起枝条的总呼吸下降所致。羊草枝条中最终的wsc浓度没有受到单次去叶处理的显著影响,却很可观地受到相继数次去叶干扰(3次和5次去叶处理)的影响。去叶干扰可能加速了碳水化合物在气温降低时自地上向地下的转移。枝条的地下部分wsc浓度比地上部分更稳定。在地上部分受到去叶干扰后,根茎中的wsc必然向上输出到地上枝条,而强烈的生长会消耗wsc,但可能的克隆整合(通常在相对频繁的去叶干扰条件下发生)将在一定程度上缓解这种wsc消耗。 在此实验中,我们还监测了羊草平均每分株所拥有的芽的数目,包括每分株分蘖节芽(tiller bud)数目和根茎芽(thizomatous bud)数目。从平均每分株芽数目的时间动态来看,各种去叶处理之间的差异程度不大,这主要是羊草在受到去叶干扰后补偿作用的贡献。与对照处理相比,受不同频次去叶干扰的三个处理的根茎芽具有相对于分蘖节的更强的增长优势。去叶干扰对根茎芽生长的促进作用大于对分蘖节芽的促进作用。我们认为这种反应是羊草克隆基株的一种逃避干扰的适应性努力,可视为一种“逃逸行为”,也可看作克隆植物觅养行为(foraging behavior)的一种特殊形式。芽的增长在中等频度的去叶干扰条件下最强,似乎同样符合中度干扰理论。有趣的是,特定频度的去叶干扰可能会造成芽种群中两大类型芽之间比例(根茎芽/分蘖节芽)的振荡现象(Oscillation)。 最后展望了对于羊草今后应继续开展的工作主要集中在两大方面:一是有性繁殖与无性繁殖之间在不同生境或不同干扰条件下的权衡关系;二是处于不同斑块对比度( patch contrast)的生境中的羊草克隆分株之问的生理整合,及其强度与斑块对比度的定量关系。
Resumo:
基于静态箱式法,在内蒙古典型羊草草原围栏与自由放牧样地对土壤呼吸作用及其影响因子进行连续两年野外对比观测。结果表明,围栏内外土壤呼吸作用的日、季动态差异不大,日动态呈单峰型曲线,高峰值一般出现在午间11:0014:00,最低值出现在凌晨1:003:00。从整个生长季节来看,土壤呼吸作用的最大值出现在6月中旬到7月底,随后逐渐降低。整个观测期间围栏与放牧样地土壤呼吸作用平均值分别是219.18 mg CO2•m-2•h-1和111.27 mg CO2•m-2•h-1,围栏样地土壤呼吸作用明显高于放牧样地,可能与土壤含水量改善和生物量增加有关。对影响土壤呼吸作用的因子分析表明,放牧使土壤含水量和相对湿度明显降低,而对气温、大气CO2浓度和光合有效辐射的影响并不大,且放牧使羊草净光合速率的影响明显增加,而对气孔导度和胞间CO2浓度影响不大。围栏样地土壤呼吸作用与各影响因子的相关性从大到小依次为土壤含水量、净光合速率、气温、相对湿度、大气CO2浓度、胞间CO2浓度、气孔导度和光合有效辐射,其中土壤含水量和气温是影响土壤呼吸作用的主要环境因子,净光合速率是主要的生物因子。尽管放牧改变了土壤呼吸速率,但土壤呼吸作用各影响因子的排列顺序基本上没有改变,只是发生了量的变化。选择目前常用的土壤呼吸作用水热因子模型,在放牧与围栏羊草草原分别进行了验证和评估。在低温低湿条件下,土壤呼吸作用主要受温度调控,然而,随着温度升高和水分增加,温度单因子模型不能模拟水分对土壤呼吸作用的激发作用。在干旱半干旱的典型草原区,土壤呼吸作用主要受土壤含水量影响,而如果把温度的调控作用考虑进去能进一步提高模型的预测能力。在围栏样地,水热双因子线性模型的相关系数高于其它模型,可以解释土壤呼吸作用82%以上的变化情况,而对于放牧样地来说,指数模型、指数-乘幂模型和指数-Arrhenius方程的相关系数(R2=0.87-0.88)高于线性模型(R2=0.73-0.79)。 在温室实验中,通过模拟典型草原优势植物种羊草不同密度对土壤呼吸作用的影响,采用根系生物量梯度外推法对羊草种群根呼吸作用与微生物呼吸作用进行了区分。结果表明,羊草根系呼吸速率在生长初期最大, 达到33.5 mg CO2•gDW-1•h-1, 随着植物生长逐渐降低而趋于稳定, 在1.1~2.0 mg CO2•gDW-1•h-1之间变动。整个生长季节根呼吸作用占土壤呼吸总量比例从9.7%逐渐上升到52.9%,平均值为36.8%。尽管随着生长根呼吸速率逐渐降低, 但根系生物量的增加却使根呼吸作用所占比例不断升高。
Resumo:
氮素是大多数陆地生态系统初级生产力的主要限制因子。由于人类的工业和农业生产活动不断加剧,导致全球性氮沉降增加,使大多数生态系统氮素的可获得性增强。从而降低或消除了氮素对生态系统的限制作用,加速了生态系统生物地球化学过程,对物种多样性和生态系统结构与功能产生了显著的影响。但由于成土母质、气候条件、地形地貌、植被组成等的差异,不同生态系统类型对氮素增加的响应也不尽相同。欧洲和北美一些发达国家地区对于草地生态系统对于全球性氮沉降增加响应进行了较全面的研究,对于分布广泛的欧亚大陆草原研究相对不足。 本文研究选择对于欧亚大陆草原较具代表性的成熟羊草草原群落及该群落的退化类型为研究对象,从1999年开始,在这两类群落中选取地形相对平缓均一,植被组成一致的地段设置了施肥小区并进行持续氮素添加实验。本文研究了成熟和退化羊草草原群落物种功能特性与土壤微生物量C、N、P对氮素添加响应。 羊草群落中6种主要植物的地上生物量、种群密度、比叶面积、叶氮和叶绿素含量对于氮素添加响应以及各指标之间相关关系的分析表明:比叶面积、基于质量的叶片含氮量和叶绿素含量、叶绿素a和叶绿素b的比值等叶片水平上物种功能特性间的相互作用,共同影响和决定了种群密度和地上生物量对氮素添加的响应。羊草通过提高比叶面积、叶片叶绿素含量和含氮量、种群密度及个体生物量等多重调节功能对氮素添加做出响应。西伯利亚羽茅主要通过提高比叶面积、单位质量叶片的叶绿素含量和含氮量,以及株丛生物量,使其在群落占据优势。大针茅和冰草在提高比叶面积、叶片叶绿素含量和含氮量的调节能力相对较低,种群密度沿氮素添加梯度显著降低。黄囊苔草只能通过提高叶片叶绿素含量和含氮量对氮素添加做出响应,其叶绿素a与叶绿素b的比值沿氮素添加梯度逐渐降低,种群密度和地上生物量也显著降低。糙隐子草的叶绿素a与叶绿素b比值沿氮素添加梯度显著降低,但由于糙隐子草具有较高的SLA,且对叶绿素、叶片含氮量的调节能力较强,氮素添加处理没有对其种群密度和地上生物量产生显著的影响。上述结果支持Tilman的光资源竞争假说和Knops等的物种替代假说。 成熟和退化羊草群落土壤微生物量、土壤有机碳、全氮、全磷、速效氮、pH以及凋落物碳、氮、磷含量的测定结果表明:(1)成熟羊草群落表层土壤微生物量碳、氮、磷含量均随氮素添加量的增加而降低;退化羊草群落表层土壤微生物量碳、氮、磷含量沿氮素梯度表现出先增加而后降低的趋势;相关分析的结果显示各群落土壤微生物量碳、氮、磷均与土壤pH呈显著的正相关。(2)微生物量碳、氮、磷含量均随土层深度的增加而下将;而对照的微生物量碳、氮、磷含量则与土壤有机质含量呈显著正相关。(3)年度间降水量差异对土壤微生物量碳、氮、磷具有较大影响。综合上述研究结果,我们认为成熟羊草群落土壤微生物生长不受氮素限制,但退化群落不同;氮素添加导致的土壤酸化作用可能是两类群落表层土壤微生物量下降的主要因素,且这种影响主要集中在0-10cm的表层土壤;表层土壤微生物量碳、氮、磷对氮素添加的响应可能还受到其它因子(如生长季降水量)的影响;深层土壤微生物量较低主要是由于土壤有机质含量较低的缘故。
Resumo:
植被与大气间CO2通量的长期观测能够使人们加深对陆地生态系统在全球碳循环中科学地位的理解。在生态系统水平上,涡度相关技术是评价植被/大气间净生态系统CO2交换量的主要手段。本研究以内蒙古羊草草原通量站为试验平台,以涡度相关技术为主要技术手段,以内蒙古草原生态系统定位研究站羊草草原围封样地2003~2005年开路涡度相关系统观测的CO2通量数据为基础,深入探讨了内蒙古羊草草原生态系统CO2通量不同时间尺度上的变化特征及其驱动机制。 在建立生态系统尺度CO2通量观测基本方法论的前提下,集中探讨了不同时间尺度内蒙古羊草草原生态系统净生态系统碳交换、呼吸作用以及碳吸收的季节变异特征及其控制机制,初步建立了内蒙古羊草草原净生态系统CO2交换量估算的基本方法,可为生态系统过程模拟与模型预测提供科学依据和技术支撑。主要结果包括以下几个方面: 1. 功率谱和协谱分析表明,开路涡度相关系统对高频湍流信号的响应能力可以满足内蒙古草原生态系统实际观测要求。与闭路涡度相关系统和常规气象系统对比分析表明,开路涡度相关系统在CO2通量长期观测中仪器性能稳定,可以满足CO2通量长期观测的客观需要。坐标旋转校正是复杂地形条件下CO2通量测定理想的倾斜校正途径。能量平衡闭合的测试仅可以作为数据质量评价的参考标准之一,而不能作为CO2通量数据质量评价的绝对标准并用于数据校正。 2. 按照CO2通量吸收的高峰特征划分,正常降水年,内蒙古羊草草原CO2通量同时具有一个吸收高峰和两个吸收高峰的特征。而极端干旱年蒙古羊草草原的CO2通量具有两个吸收高峰的特征。在严重干旱胁迫条件下,2005年内蒙古羊草草原生态系统净生态系统交换出现显著下降的趋势。净生态系统交换下降主要是降雨量减少的影响。 3. 通过分析不同时间尺度上CO2通量和环境因子的关系,发现小时尺度上,内蒙古羊草草原生态系统的净生态系统交换主要由光合有效辐射控制,而饱和水汽压差和土壤含水量是影响生态系统光合作用的另外两个关键因素。在更大的时间尺度上降雨量和物候相的变化是调节生态系统碳通量大小的主要因素。最大的生物量和LAI出现的时间和最大的NEE出现的时间相吻合,但是降雨量的变化可以改变这种关系。 4. 在内蒙古羊草草原区>3mm的降雨被认为是对生态系统有效的。土壤含水量(0~20cm)在一次有效降雨事件发生后,约1~2天后才会发生响应, 2003年和2004年,NEE在 >3mm的降雨事件发生后,NEE开始增加,4~6天后达到高峰。随着降雨的结束,NEE在达到高峰后开始降低,10天后达到初始值的60~70%。 5. 在生态系统水平上,温度和土壤水分条件的季节动态是控制生态系统呼吸季节变化模式的重要环境要素,在干旱胁迫的条件下,水分条件也可能成为生态系统呼吸的主导因素,生态系统呼吸在干旱条件降低。
Resumo:
过度放牧是导致浑善达克沙地荒漠化发展的重要原因之一。在该地区占据优势的根茎型克隆草本植物不仅被牲畜频繁地采食,而且也面临着频繁的沙埋和养分胁迫的干扰。通过克隆生长,这些根茎型植物的单个基株能够跨越异质性的资源斑块,同时也可能遭受局部的、非均匀性的采食或沙埋。克隆整合可能会作为一种补偿性机制促进被采食克隆部分或分株的恢复和生长,因而,能够缓解采食及其与环境因素(沙埋/养分胁迫)交互作用对克隆植物的影响。本文以浑善达克沙地草地典型的根茎型沙生植物种和草地植物种为实验材料,应用(野外和温室)实验生态学方法检验了克隆整合的这种效果。 在一个野外实验中,通过对共存在沙丘上的两种根茎型克隆植物沙地雀麦(Bromus ircutensis Kom.)和沙鞭(Psammochloa villosa (Trin.) Bor.),及两种非克隆植物褐沙蒿(Artemisia intramongolica H.C.Fu)和草木樨状黄芪(Astragalus melilotoides Pall.)的个体植株进行不同强度(0、50、90%)的枝叶去除处理,我们发现:50%和90%的枝叶去除增加了沙地雀麦和沙鞭的相对生长率(RGR);而90%的枝叶去除显著减小了褐沙蒿和草木樨状黄芪的RGR。经两个多月处理后,与对照相比,去除枝叶的非克隆植物的地上生物量恢复的远不及克隆植物完全。这些结果表明克隆植物比共存的非克隆植物更能忍耐采食。在分株种群水平上开展的另外一个野外实验表明,在50%的去除强度下,根茎连接明显改善了沙鞭分株种群的表现,但对沙地雀麦分株种群没有显著影响。然而,在90%的去除强度下,根茎连接显著的改善了两种植物分株种群的表现,显示出克隆整合的重要作用。而且,与未剪除的分株种群相比,两种植物当遭受90%的去除强度后,其根茎保持连接的分株种群产生了更多而小的分株个体。 以羊草(Leymus chinensis (Trin.) Tzevl.)和赖草(Leymus secalinus (Georgi) Tzvel)的克隆片断为材料,通过两个温室实验研究了克隆整合对克隆植物忍受采食与沙埋/养分胁迫交互作用的影响。每个克隆片断由一个近端(发育上较老)分株和一个远端(发育上较年轻)分株组成。近端分株不进行胁迫处理,而远端分株进行重复去除 枝叶沙埋/养分胁迫处理;同时,切断或保持克隆片断的根茎连接。结果表明,单因素的干扰对两个种远端分株的影响较小。当遭受剪除处理后,低养供应的赖草远端分株显示出比高养条件下更强的生物量补偿能力。当两个种的远 端分株处于单因素胁迫时,根茎切断很少影响其生物量生产和新分株的形成;而当远端分株同时处于枝叶去除和沙 埋/养分胁迫下时,切断根茎对两个种远端分株的生物量和分株的产生造成了明显的负效果,表明克隆整合发挥了重 要的作用。但克隆整合并没有导致近端分株的显著损耗。 基于以上实验结果,我们得出:克隆整合可以明显提高浑善达克沙地根茎克隆植物应对枝叶去除,及其和沙埋/养分胁迫交互影响的能力,是克隆植物适应频繁干扰的沙地草地环境的重要对策之一。
Resumo:
放牧是草地最主要的利用方式,草地植物被家畜采食而部分或全部去叶是一个普遍存在的现象。内蒙古草原是我国北方地区最大的干旱半干旱草原,长期以来,过度放牧使草地的植被、土壤状况不断趋于恶化。由于过度放牧,草地植物正常的生理生态特性受到影响,光合作用能力、生长能力和繁殖更新能力等出现不同程度的降低。本文从动物-植物-土壤相互联系的角度出发,着重研究了过度放牧和刈割对内蒙古草原的一种典型植物—羊草(Leymus chinensis (Trin.) Tzevel.)形态、生长和生理的影响,以及羊草对放牧和刈割的生理生态响应,并得出以下主要结论: 1.过度放牧使土壤表层含水量、有机质含量和氮含量显著下降;羊草的叶量减少,比叶面积增大,节间缩短,分蘖减少;羊草的生物量根部分配比例增大,生殖器官则分配很少;羊草种群高度、盖度、密度和相对生物量均比对照显著降低。试验结果说明,过度放牧从短期可以影响到羊草种群和部分形态特征,长期则影响羊草的生物量分配模式,最终还使羊草的生境趋于恶化,不利于羊草的生长。同时,羊草对放牧也形成了一定的适应性。例如,比叶面积增大,增加了更多的光合叶面积;节间缩短可以躲避家畜啃食;生物量向根部集中,增大了对水分和养分的吸收面积等。 2.过度放牧使羊草的净光合速率显著降低;光合作用补偿点增大,光合作用饱和点却降低;蒸腾速率、气孔导度下降,暗呼吸速率增大;光系统Ⅱ的光化学效率、实际量子产量和光化学粹灭值均显著低于围封样地;瞬时和长期的水分利用效率也有不同程度的降低。试验结果表明,过度放牧强烈制约了羊草的光合作用能力和水分利用效率。而植物的光合作用是物质生产的基础,羊草光合能力的降低必然导致其生物产量的降低,从而也改变了羊草种群在整个生物群落中的作用和地位。 3.羊草在轻度(地上20%)和中度(地上40%)刈割条件下可以获得更大的地上累积生物量,表现为超补偿生长,并且地下生物量降低较少,相对生长速率较高,分蘖较多。而重度(地上80%)刈割可收获的地上累积生物量远少于对照,表现为欠补偿生长,且地下生物量大量减少,分蘖较少。在轻度或中度刈割条件下,施氮肥可以起到稳定维持植物生物产量的作用,但是重度刈割条件下,即使施加再多的氮肥也不能补偿植物生物量的损失。施磷肥对羊草的补偿性生长特性没有明显影响。而干旱加刈割处理的羊草不管是哪个刈割水平,均为欠补偿生长,地下生物量低,相对生长速率较低。 4.轻度刈割后羊草剩余叶片经过3天左右的生理恢复期后,表现出了明显的补偿性光合作用。中度和重度刈割羊草的生理恢复时间较长,没有表现出补偿性光合作用。刈割和施氮处理羊草剩余叶片的净光合速率变化和仅刈割处理(对照)基本上相同。刈割和干旱处理羊草剩余叶片的光合速率始终处于一个较低的水平,各刈割水平均没有表现出补偿性光合作用,主要是干旱导致气孔关闭,限制了叶片的气体交换。刈割后叶片气孔导度的增加可能是补偿性光合作用发生的重要原因。但叶片受到强烈伤害后,气孔导度虽然增加,其呼吸作用也增大,所以净光合速率还是较低。重度刈割叶片的叶绿素含量升高可以增加其光合作用潜力,为恢复正常生长作了生理上的准备,这可能是植物对刈割或放牧的一种生理适应性。 研究放牧条件下植物对动物采食的反应不仅具有重要的理论生态学意义,而且对提高植物的净生长量,维持草地持续的生产能力,实现草地的可持续利用具有重要的意义。研究草地主要植物对牲畜采食的补偿性生长效应及其条件,对合理利用草地可再生资源,确定合理的放牧强度有重要意义。应充分利用植物的超补偿效应,适时放牧,控制放牧强度,实现草地植物可食部分的超补偿生长,实现草地的最优化利用和生产力的最大化。
Resumo:
锥形繁殖体是具有吸湿芒和锐利尖端的一种繁殖体类型。芒的吸湿运动促使锥形繁殖体穿透土壤,而存在于繁殖体上的短硬刚毛阻止它在芒再次打开螺旋时从土壤中退出。通过这个过程,种子被埋藏到一定深度,称之为种子(繁殖体)的打钻作用,这是锥形繁殖体最主要的功能。锥形繁殖体的结构和功能代表了繁殖体在生活史各个阶段的适应,可能是植物在群落内占优势的原因之一。针茅属植物是具有锥形繁殖体的植物中较大的一类,常常被看作是识别地带性植被的优势种。小针茅分布于荒漠草原,克氏针茅和大针茅分别分布于典型草原较干和较湿的区域。沿着环境梯度的变化这些植物呈现明显的生态替代。因此,我们以小针茅、克氏针茅和大针茅为研究对象,从种子打钻、种子埋藏、种子生理特征出发研究针茅属植物的繁殖体特征对地带性分布的适应。结果表明: 小针茅的实生苗主要由当年种子产生,克氏针茅和大针茅在当年的冷秋季节和第二年的春季均能够产生实生苗。根据土壤种子库分类,三种针茅均具有瞬时种子库,所不同的是小针茅具有I型种子库的特征,克氏针茅和大针茅具有II型种子库的特征。针茅属植物通过芒的吸湿运动将繁殖体埋入土壤,这个过程可以造成种子损伤,但大部分只是引起基盘的脱落,而这不影响萌发,受到严重损伤的种子仅占种子库很小的一部分。 繁殖体吸湿芒的损伤程度和繁殖体的入土角度都影响繁殖体的埋藏。当芒被过度损伤以致不能提供杠杆作用时繁殖体不能埋藏。而繁殖体入土角度和埋藏深度之间存在显著的负相关关系。繁殖体的埋藏能力并不总是与土壤条件有关,大针茅和克氏针茅的繁殖体埋藏与土壤类型有关,而小针茅的埋藏主要与环境的湿度条件有关。 种子埋藏深度通过减少实生苗出现率和推迟实生苗的出现时间来影响实生苗的出现。埋藏深度与实生苗的出现率呈显著负相关,与实生苗出现时间呈显著的正相关关系。棕钙土内种子埋藏深度对实生苗出现的影响比在栗钙土内的影响更明显。不同针茅物种具有不同的最适埋藏深度范围,小针茅的最适埋藏深度更浅而范围也更窄,这与它出现的环境有关。因此,繁殖体的形态和生理特征都体现了不同针茅繁殖体对环境条件的进化适应,可以从有性更新的角度解释针茅属植物的地带性分布和生态替代的原因。 放牧是羊草草原的主要利用方式。放牧引起的植被变化影响水分的可用性,而反过来植物所获取的水分来源也可以影响物种的分布。通过测定内蒙古羊草草原群落放牧和不放牧区内主要植物种和土壤的氢同位素值来研究植物 的水分来源,确定放牧对植物使用水分来源的影响,调查放牧前后植物的水分来源变化和相对生物量变化的关系。 我们发现120 cm深的土壤剖面在统计学上可以分为三层:0-20 cm, 20-50 cm和50-120 cm。低于50 cm土壤层的氢同 位素信号类似于地下水,这部分水分很少受到降雨的影响也不被任何植物所利用。群落内,灌木小叶锦鸡儿主要使 用来自20-50 cm土壤层的水分,除此之外大多数物种则主要使用来自水分含量频繁波动的地下20 cm土壤层内的水分。放牧使群落倾向于利用更浅层的土壤水,对植物的水分来源的影响则直接反映到它们的生物量变化上。此外,植 物水分来源对放牧的响应和生物量对放牧的响应存在显著的相关关系,水分来源受到放牧影响越大的植物对放牧的响应越敏感。因此,我们有可能能够通过植物对水分来源的利用来估计物种在放牧演替中的丰富度分布。
Resumo:
由温室气体的大量排放引起的全球环境变化不仅导致了温度的升高和降水格局的变化,亦引起了干旱等极端气候事件的频繁发生。研究羊草光合参数对水分胁迫及复水的响应,可以增进全球变化对植物光合作用和陆地生态系统影响的理解,揭示羊草光合参数对水分胁迫及复水的响应机理,为发展植物光合参数对水热变化的响应模型提供参数与依据。基于温室模拟试验和野外观测实验,采用Li-6400R便携式光合作用系统(Li-cor, Lincoln, NE, USA)测定了羊草(Leymus chinensis)叶片A/Ci曲线(净光合速率A和胞间CO2浓度Ci的关系曲线),获取了羊草叶片的光合参数Vcmax(Rubisco的最大羧化速率)、Jmax(最大光合电子传递速率)和TPU(磷酸丙糖利用率),分析研究了羊草叶片光合参数Vcmax(Rubisco的最大羧化速率)、Jmax(最大光合电子传递速率)和TPU(磷酸丙糖利用率)对干旱与复水的响应机理。结果表明,无论是模拟实验还是野外观测均显示羊草叶片的光合参数随着土壤水分的增加呈抛物线曲线变化,但各光合参数最大值对土壤水分的响应不同。温室模拟下的羊草光合参数Vcmax,Jmax和TPU在土壤含水量分别在15.56%,15.89%和16.23%时达到最大,而野外观测羊草的光合参数Vcmax,Jmax和TPU在土壤含水量分别为16.89%,17%和16.79%时达到最大。复水后羊草植株叶片光合参数的变化取决于前期干旱的影响,土壤含水量18%~19%和15%~16%处理的羊草复水后光合参数能够恢复正常,前者甚至超过正常水平,说明适宜的水分胁迫在复水后能够提高羊草叶片的光合能力,促进光合作用;土壤含水量10%~12%和7%~9%处理下的羊草复水后光合参数则不能恢复到正常水平。土壤含水量15%~16%可能是羊草光合能力在水分胁迫后能否恢复的阈值。