991 resultados para Light interference
Resumo:
This thesis reports investigations into the paper wetting process and its effects on the surface roughness and the out-of-plane (ZD) stiffness of machine-made paper. The aim of this work was to test the feasibility of employing air-borne ultrasound methods to determine surface roughness (by reflection) and ZD stiffness (by through transmission) of paper during penetration of distilled water, isopropanol and their mixtures. Air-borne ultrasound provides a non-contacting way to evaluate sample structure and mechanics during the liquid penetration event. Contrary to liquid immersion techniques, an air-borne measurement allows studying partial wetting of paper. In addition, two optical methods were developed to reveal the liquid location in paper during wetting. The laser light through transmission method was developed to monitor the liquid location in partially wetted paper. The white light reflection method was primarily used to monitor the penetration of the liquid front in the thickness direction. In the latter experiment the paper was fully wetted. The main results of the thesis were: 1) Liquid penetration induced surface roughening was quantified by monitoring the ultrasound reflection from the paper surface. 2) Liquid penetration induced stiffness alteration in the ZD of paper could be followed by measuring the change in the ultrasound ZD resonance in paper. 3) Through transmitted light revealed the liquid location in the partially wetted paper. 4) Liquid movement in the ZD of the paper could be observed by light reflection. The results imply that the presented ultrasonic means can without contact measure the alteration of paper roughness and stiffness during liquid transport. These methods can help avoiding over engineering the paper which reduces raw material and energy consumption in paper manufacturing. The presented optical means can estimate paper specific wetting properties, such as liquid penetration speed, transport mechanisms and liquid location within the paper structure. In process monitoring, these methods allow process tuning and manufacturing of paper with engineered liquid transport characteristics. With such knowledge the paper behaviour during printing can be predicted. These findings provide new methods for paper printing, surface sizing, and paper coating research.
Resumo:
The increased accuracy in the cosmological observations, especially in the measurements of the comic microwave background, allow us to study the primordial perturbations in grater detail. In this thesis, we allow the possibility for a correlated isocurvature perturbations alongside the usual adiabatic perturbations. Thus far the simplest six parameter \Lambda CDM model has been able to accommodate all the observational data rather well. However, we find that the 3-year WMAP data and the 2006 Boomerang data favour a nonzero nonadiabatic contribution to the CMB angular power sprctrum. This is primordial isocurvature perturbation that is positively correlated with the primordial curvature perturbation. Compared with the adiabatic \Lambda CMD model we have four additional parameters describing the increased complexity if the primordial perturbations. Our best-fit model has a 4% nonadiabatic contribution to the CMB temperature variance and the fit is improved by \Delta\chi^2 = 9.7. We can attribute this preference for isocurvature to a feature in the peak structure of the angular power spectrum, namely, the widths of the second and third acoustic peak. Along the way, we have improved our analysis methods by identifying some issues with the parametrisation of the primordial perturbation spectra and suggesting ways to handle these. Due to the improvements, the convergence of our Markov chains is improved. The change of parametrisation has an effect on the MCMC analysis because of the change in priors. We have checked our results against this and find only marginal differences between our parametrisation.
Resumo:
Several excited states of Ds and Bs mesons have been discovered in the last six years: BaBar, Cleo and Belle discovered the very narrow states D(s0)*(2317)+- and D(s1)(2460)+- in 2003, and CDF and DO Collaborations reported the observation of two narrow Bs resonances, B(s1)(5830)0 and B*(s2)(5840)0 in 2007. To keep up with experiment, meson excited states should be studied from the theoretical aspect as well. The theory that describes the interaction between quarks and gluons is quantum chromodynamics (QCD). In this thesis the properties of the meson states are studied using the discretized version of the theory - lattice QCD. This allows us to perform QCD calculations from first principles, and "measure" not just energies but also the radial distributions of the states on the lattice. This gives valuable theoretical information on the excited states, as we can extract the energy spectrum of a static-light meson up to D wave states (states with orbital angular momentum L=2). We are thus able to predict where some of the excited meson states should lie. We also pay special attention to the order of the states, to detect possible inverted spin multiplets in the meson spectrum, as predicted by H. Schnitzer in 1978. This inversion is connected to the confining potential of the strong interaction. The lattice simulations can also help us understand the strong interaction better, as the lattice data can be treated as "experimental" data and used in testing potential models. In this thesis an attempt is made to explain the energies and radial distributions in terms of a potential model based on a one-body Dirac equation. The aim is to get more information about the nature of the confining potential, as well as to test how well the one-gluon exchange potential explains the short range part of the interaction.
Resumo:
Light is essential to life and vision; without light, nothing exists. It plays a pivotal role in the world of architectural design and is used to generate all manner of perceptions that enhance the designed environment experience. But what are the fundamental elements that designers rely upon to generate light enhanced experiences? How are people’s perceptions influenced by designed light schemas? In this book Dr. Marisha McAuliffe highlights the relationship that exists between light source and surface and how both create quality of effect in the built environment. Concepts relating to architectural lighting design history, theories, research, and generation of lighting design schemes to create optimal experiences in architecture, interior architecture and design are all explored in detail. This book is essential reading for both the student and the professional working in architectural lighting, particularly in terms of qualitative perception oriented lighting design
Resumo:
Oleate-capped ZnO:MgO nanocrystals have been synthesized that are soluble in nonpolar solvents and which emit strongly in the visible region (450−600 nm) on excitation by UV radiation. The visible emission involves recombination of trap states of the nanocrystalline ZnO core and has a higher quantum yield than the band gap UV exciton emission. The spectrally resolved dynamics of the trap states have been investigated by time-resolved emission spectroscopy. The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, and with efficiencies that depend on the occupancy of the trap density of states.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Resumo:
In uplink OFDMA, carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause multiuser interference (MUI). In practical uplink OFDMA systems (e.g., IEEE 802.16e standard), effect of this MUI is made acceptably small by requiring that frequency/timing alignment be achieved at the receiver with high precision (e.g., CFO must be within 1 % of the subcarrier spacing and TO must be within 1/8th of the cyclic prefix duration in IEEE 802.16e), which is realized using complex closed-loop frequency/timing correction between the transmitter and the receiver. An alternate open-loop approach to handle the MUI induced by large CFOs and TOs is to employ interference cancellation techniques at the receiver. In this paper, we first analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of large CFOs and TOs in uplink OFDMA. We then propose a parallel interference canceller (PIC) for the mitigation of interference due to CFOs and TOs in this system. We show that the proposed PIC effectively mitigates the performance loss due to CFO/TO induced interference in uplink OFDMA.
Resumo:
In this paper, we consider the design and bit-error performance analysis of linear parallel interference cancellers (LPIC) for multicarrier (MC) direct-sequence code division multiple access (DS-CDMA) systems. We propose an LPIC scheme where we estimate and cancel the multiple access interference (MAT) based on the soft decision outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation. In order to choose these weights optimally, we derive exact closed-form expressions for the bit-error rate (BER) at the output of different stages of the LPIC, which we minimize to obtain the optimum weights for the different stages. In addition, using an alternate approach involving the characteristic function of the decision variable, we derive BER expressions for the weighted LPIC scheme, matched filter (MF) detector, decorrelating detector, and minimum mean square error (MMSE) detector for the considered multicarrier DS-CDMA system. We show that the proposed BER-optimized weighted LPIC scheme performs better than the MF detector and the conventional LPIC scheme (where the weights are taken to be unity), and close to the decorrelating and MMSE detectors.
Resumo:
Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
Suitable pin-to-hole interference can significantly increase the fatigue life of a pin joint. In practical design, the initial stresses due to interference are high and they are proportional to the effective interference. In experimental studies on such joints, difficulties have been experienced in estimating the interference accurately from physical measurements of pin and hole diameters. A simple photoelastic method has been developed to determine the effective interference to a high degree of accuracy. This paper presents the method and reports illustrative data from a successful application thereof.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.