881 resultados para Learning Bayesian Networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for a(n)b(n)c(n), a context-sensitive language. The additional difficulty with a(n)b(n)c(n), compared with the context-free language a(n)b(n), consists of 'counting up' and 'counting down' letters simultaneously. The network solution is to oscillate in two principal dimensions, one for counting up and one for counting down. This study focuses on the dynamics employed by the sequential cascaded network, in contrast to the simple recurrent network, and the use of backpropagation through time. Found solutions generalize well beyond training data, however, learning is not reliable. The contribution of this study lies in demonstrating how the dynamics in recurrent neural networks that process context-free languages can also be employed in processing some context-sensitive languages (traditionally thought of as requiring additional computation resources). This continuity of mechanism between language classes contributes to our understanding of neural networks in modelling language learning and processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article describes an attempt to improve student learning outcomes in a computer networks course by making lectures more active learning experiences. Quick quizzes, group and individual exercises, the review of student questions, as well as multiple breaks, were incorporated into the weekly three-hour lectures. Student responses to the modified lectures was overwhelmingly positive: over 85% of respondents agreed that the lectures aided understanding, with large majorities of the respondents finding the individual activities useful to their learning. Although student examination performance improved over the previous year, performance on an examination question that was designed to examine deep understanding remained unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collaborative networks are typically formed by heterogeneous and autonomous entities, and thus it is natural that each member has its own set of core-values. Since these values somehow drive the behaviour of the involved entities, the ability to quickly identify partners with compatible or common core-values represents an important element for the success of collaborative networks. However, tools to assess or measure the level of alignment of core-values are lacking. Since the concept of 'alignment' in this context is still ill-defined and shows a multifaceted nature, three perspectives are discussed. The first one uses a causal maps approach in order to capture, structure, and represent the influence relationships among core-values. This representation provides the basis to measure the alignment in terms of the structural similarity and influence among value systems. The second perspective considers the compatibility and incompatibility among core-values in order to define the alignment level. Under this perspective we propose a fuzzy inference system to estimate the alignment level, since this approach allows dealing with variables that are vaguely defined, and whose inter-relationships are difficult to define. Another advantage provided by this method is the possibility to incorporate expert human judgment in the definition of the alignment level. The last perspective uses a belief Bayesian network method, and was selected in order to assess the alignment level based on members' past behaviour. An example of application is presented where the details of each method are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe a casestudy of an experiment on how reflexivity and technology can enhance learning, by using ePorfolios as a training environment to develop translation skills. Translation is today a multiskilled job and translators need to assure their clients a good performance and quality, both in language and in technology domains. In order to accomplish it, for the translator all the tasks and processes he develops appear as crucial, being pretranslation and posttranslation processes equally important as the translation itself, namely as far as autonomy, reflexive and critical skills are concerned. Finally, the need and relevance for collaborative tasks and networks amongst virtual translation communities, led us to the decision of implementing ePortfolios as a tool to develop the requested skills and extend the use of Internet in translation, namely in terminology management phases, for the completion of each task, by helping students in the management of the projects deadlines, improving their knowledge on the construction and management of translation resources and deepening their awareness about the concepts related to the development and usability of ePorfolios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CISTI'2015 - 10ª Conferência Ibérica de Sistemas e Tecnologias de Informação, 17 a 20 de junho de 2015, Águeda, Aveiro, Portugal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-Learning frameworks are conceptual tools to organize networks of elearning services. Most frameworks cover areas that go beyond the scope of e-learning, from course to financial management, and neglects the typical activities in everyday life of teachers and students at schools such as the creation, delivery, resolution and evaluation of assignments. This paper presents the Ensemble framework - an e-learning framework exclusively focused on the teaching-learning process through the coordination of pedagogical services. The framework presents an abstract data, integration and evaluation model based on content and communications specifications. These specifications must base the implementation of networks in specialized domains with complex evaluations. In this paper we specialize the framework for two domains with complex evaluation: computer programming and computer-aided design (CAD). For each domain we highlight two Ensemble hotspots: data and evaluations procedures. In the former we formally describe the exercise and present possible extensions. In the latter, we describe the automatic evaluation procedures.