906 resultados para Klein Geometry
Resumo:
In the paper we give an exposition of the major results concerning the relation between first order cohomology of Banach algebras of operators on a Banach space with coefficients in specified modules and the geometry of the underlying Banach space. In particular we shall compare the properties weak amenability and amenability for Banach algebras A(X), the approximable operators on a Banach space X. Whereas amenability is a local property of the Banach space X, weak amenability is often the consequence of properties of large scale geometry.
Resumo:
The ability of carbon nanotubes (CNTs) to reinforce and enhance the electrical conductivity of polymer matrices is a function of both the aspect ratio and surface chemistry of the CNTs. Hitherto, due to the variability in MWCNT synthesis methods it has not been possible to study the effect of MWCNT aspect ratio and functionality on polymer composite properties. This paper was the first to report the correlation between MWCNT aspect ratio and functionality on the formation of electrical and rheological percolated networks. Furthermore, the fundamental ballistic conductance of MWCNTs made using arc discharge and chemical vapour deposition techniques was reported.
Resumo:
The three-dimensional (3D) weaving process offers the ability to tailor the mechanical properties via design of the weave architecture. One repeat of the 3D woven fabric is represented by the unit cell. The model accepts basic weaver and material manufacturer data as inputs in order to calculate the geometric characteristics of the 3D woven unit cell. The specific weave architecture manufactured and subsequently modelled had an angle interlock type binding configuration. The modelled result was shown to have a close approximation compared to the experimentally measured values and highlighted the importance of the representation of the binder tow path.
Resumo:
In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.
Resumo:
This article examines the relations between documentary aesthetics and the political sensibility of William Klein. Structured around the cultural phenomena that have remained integral to his career as a photographer and filmmaker - fashion, sport, and music - it discusses his enduring attachment to notions of freedom and creativity still associated with 1960s counter-culture, and the Vietnam War. In particular, it examines how how his films disrupt conventional categories, and subvert the familiar rhetoric of mainstream documentary film, especially that associated with cinéma vérité. A erstwhile protege of Dada, Klein has always valued the expressive potential of improbable juxtapositions, of intercutting between times and places, and subverting mainstream journalistic modes and intentions. The article argues that this attitude is increasingly rare among contemporary documentary filmmakers, and yet it is the very thing that gives his work a distinctive aesthetic texture, and relevance to any history of cinema.
Resumo:
Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed.
Resumo:
We report what is to our knowledge the first demonstration of a transient x-ray laser pumped by a 350-fs pulse in a traveling-wave irradiation geometry. For a 500-fs pump pulse the traveling-wave irradiation was found to have a strong effect on enhancing the Ni-like silver 4d-4p lasing emission at 13.9 nm. The signal enhancement was significantly less when the pulse duration was lengthened to 1.7 ps. The experimental observations are well reproduced by a simple model when the duration of gain is taken of the order of 15-20 ps. For the 500-fs pulse a gain coefficient of 14.5 cm(-1) was measured for plasma lengths up to 7 mm. Refraction of the amplified photons is believed to be the main cause of the limitation of the effective amplification length. (C) 2000 Optical Society of America.