970 resultados para JAVA (LENGUAJE DE PROGRAMACIÓN)
Resumo:
This paper explores the problem of protecting a site on the Internet against hostile external Java applets while allowing trusted internal applets to run. With careful implementation, a site can be made resistant to current Java security weaknesses as well as those yet to be discovered. In addition, we describe a new attack on certain sophisticated firewalls that is most effectively realized as a Java applet.
Resumo:
The Java programming language has been widely described as secure by design. Nevertheless, a number of serious security vulnerabilities have been discovered in Java, particularly in the component known as the Bytecode Verifier. This paper describes a method for representing Java security constraints using the Alloy modeling language. It further describes a system for performing a security analysis on any block of Java bytecodes by converting the bytes into relation initializers in Alloy. Any counterexamples found by the Alloy analyzer correspond directly to insecure code. Analysis of a real-world malicious applet is given to demonstrate the efficacy of the approach.
Resumo:
The Java programming language has been widely described as secure by design. Nevertheless, a number of serious security vulnerabilities have been discovered in Java, particularly in the Bytecode Verifier, a critical component used to verify class semantics before loading is complete. This paper describes a method for representing Java security constraints using the Alloy modeling language. It further describes a system for performing a security analysis on any block of Java bytecodes by converting the bytes into relation initializers in Alloy. Any counterexamples found by the Alloy analyzer correspond directly to insecure code. Analysis of the approach in the context of known security exploits is provided. This type of analysis represents a significant departure from standard malware analysis methods based on signatures or anomaly detection.
Resumo:
Weak references provide the programmer with limited control over the process of memory management. By using them, a programmer can make decisions based on previous actions that are taken by the garbage collector. Although this is often helpful, the outcome of a program using weak references is less predictable due to the nondeterminism they introduce in program evaluation. It is therefore desirable to have a framework of formal tools to reason about weak references and programs that use them. We present several calculi that formalize various aspects of weak references, inspired by their implementation in Java. We provide a calculus to model multiple levels of non-strong references, where a different garbage collection policy is applied to each level. We consider different collection policies such as eager collection and lazy collection. Similar to the way they are implemented in Java, we give the semantics of eager collection to weak references and the semantics of lazy collection to soft references. Moreover, we condition garbage collection on the availability of time and space resources. While time constraints are used in order to restrict garbage collection, space constraints are used in order to trigger it. Finalizers are a problematic feature in Java, especially when they interact with weak references. We provide a calculus to model finalizer evaluation. Since finalizers have little meaning in a language without side-effect, we introduce a limited form of side effect into the calculus. We discuss determinism and the separate notion of uniqueness of (evaluation) outcome. We show that in our calculus, finalizer evaluation does not affect uniqueness of outcome.
Resumo:
p.55-64
Resumo:
p.147-154
Resumo:
En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.
Resumo:
El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.
Resumo:
La idea que motiva el presente trabajo se refiere a entender cómo generalizan los estudiantes de bachillerato y qué tipo de pensamiento les permite hacerlo, para ello planteamos a un grupo de estudiantes del IEMS actividades donde se debe identificar un patrón que predice una secuencia geométrica, como un primer acercamiento a la idea de generalización. Este patrón debe ser descrito de forma algebraica (fórmula). En este artículo mostraremos dos tipos de formulaciones distintas construidas por los estudiantes para abordar el problema con distintos tipos de pensamiento que nos permiten mirar aspectos que podrían determinar el éxito o fracaso del desarrollo cognitivo puesto en marcha por los estudiantes.
Resumo:
El presente trabajo, realizado como parte de una investigación desde la línea de la construcción social del conocimiento con enfoque socioepistemológico, se centra en analizar a partir de un estudio de caso algunas de las características del lenguaje utilizado en el discurso matemático escolar. Se describen aspectos del lenguaje empleado por los estudiantes y docentes en el aula de matemática, mostrando la manera en la que la utilización de un lenguaje formal es aceptada como parte del contrato didáctico, a pesar de que se torna en obstáculo en muchas oportunidades.
Resumo:
El objetivo de este trabajo es explicar el uso del teorema de Bayes en la estimación de la función de densidad posterior (fdp) de parámetros de interés, usando el software matemático Maple. Se presenta el caso de la distribución de Pareto como una aproximación a la distribución de los ingresos de una población. Se estima la fdp del parámetro alfa de la distribución de Pareto para el caso de datos agrupados.
Resumo:
La programación lineal es un tema muy importante dentro del bloque de álgebra de las matemáticas aplicadas a las ciencias sociales y es conveniente dar una idea clara y concisa en el aula de cuál es su campo de aplicación, ya que es posible que el alumnado se enfrente a ella en sus estudios superiores de la aplique en su trabajo futuro.
Resumo:
Se lleva a cabo un análisis de los lenguajes de programación desde el punto de vista de sus relaciones con el software matemático. Para ello se comienza con una definición bastante flexible de software matemático, para continuar con un análisis metodológico de los lenguajes de programación, estudiando los paradigmas imperativo, funcional, la programación lógica y la orientación a objetos. Por último se realiza un estudio histórico de los lenguajes de programación, así como de los lenguajes de programación más adecuados para la implementación de algoritmos matemáticos.
Resumo:
Usualmente, los problemas de ingenio (puzles) han sido considerados ejemplos motivadores para la enseñanza de la programación. Muchos autores han defendido el lenguaje PROLOG como un primer acercamiento a la programación y a las ciencias de la computación.
Resumo:
Existen medios de comunicación universales como la música o el arte. La notación de las matemáticas también goza, afortunadamente, de cierta universalidad. Una parte de las matemáticas, la teoría de grafos, se ha mostrado, en los últimos tiempos, como una notación muy útil y unificadora en diversas disciplinas.