947 resultados para In vivo methods
Resumo:
Purpose: Recent studies indicate that ocular and scleral rigidity is pertinent to our understanding of glaucoma, age related macular degeneration and the development and pathogenesis of myopia. The principal method of measuring ocular rigidity is by extrapolation of data from corneal indentation tonometry (Ko) using Friedenwald’s transformation algorithms. Using scleral indentation (Schiotz tonometry) we assess whether regional variations in resistance to indentation occur in vivo across the human anterior globe directly, with reference to the deflection of Schiotz scale readings. Methods: Data were collected from both eyes of 26 normal young adult subjects with a range of refractive error (mean spherical equivalent ± S.D. of -1.77 D ± 3.28 D, range -10.56 to +4.38 D). Schiotz tonometry (5.5 g & 7.5 g) was performed on the cornea and four scleral quadrants; supero-temporal (ST) and -nasal (SN), infero-temporal (IT) and -nasal (IN) approximately 8 mm posterior to the limbus. Results: Values of Ko (mm3)-1 were consistent with those previously reported (mean 0.0101 ± 0.0082, range 0.0019–0.0304). In regards to the sclera, significant differences (p < 0.001) were found across quadrants with indentation readings for both loads between means for the cornea and ST; ST and SN; ST and IT, ST and IN. Mean (±S.D.) scale readings for 5.5 g were: cornea 5.93 ± 1.14, ST 8.05 ± 1.58, IT 7.03 ± 1.86, SN 6.25 ± 1.10, IN 6.02 ± 1.49; and 7.5 g: cornea 9.26 ± 1.27, ST 11.56 ± 1.65, IT 10.31 ± 1.74, SN 9.91 ± 1.20, IN 9.50 ± 1.56. Conclusions: Significant regional variation was found in the resistance of the anterior sclera to indentation produced by the Schiotz tonometer.
Resumo:
Background Embryonic stem (ES) cells have the potential to produce unlimited numbers of surrogate insulin-producing cells for cell replacement therapy of type I diabetes mellitus. The impact of the in vivo environment on mouse ES cell differentiation towards insulin-producing cells was analysed morphologically after implantation. Methods ES cells differentiated in vitro into insulin-producing cells according to the Lumelsky protocol or a new four-stage differentiation protocol were analysed morphologically before and after implantation for gene expression by in situ reverse transcription polymerase chain reaction and protein expression by immunohistochemistry and ultrastructural analysis. Results In comparison with nestin positive ES cells developed according to the reference protocol, the number of ES cells differentiated with the four-stage protocol increased under in vivo conditions upon morphological analysis. The cells exhibited, in comparison to the in vitro situation, increased gene and protein expression of Pdx1, insulin, islet amyloid polypeptide (IAPP), the GLUT2 glucose transporter and glucokinase, which are functional markers for glucose-induced insulin secretion of pancreatic beta cells. Renal sub-capsular implantation of ES cells with a higher degree of differentiation achieved by in vitro differentiation with a four-stage protocol enabled further significant maturation for the beta-cell-specific markers, insulin and the co-stored IAPP as well as the glucose recognition structures. in contrast, further in vivo differentiation was not achieved with cells differentiated in vitro by the reference protocol. Conclusions A sufficient degree of in vitro differentiation is an essential prerequisite for further substantial maturation in a beta-cell-specific way in vivo, supported by cell-cell contacts and vascularisation. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides. In our previous work, we have shown the tethering of laminin-332 α3 chain to type I collagen scaffold using microbial transglutaminase (mTGase), promotes cell adhesion, migration, and proliferation. In this study, we evaluated the wound healing properties of tailored laminin-332 α3 chain (peptide A: PPFLMLLKGSTR) tethered to a type I collagen scaffold using mTGase by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide B: PPFLMLLKGSTREAQQIVM) or lysine (peptide C: PPFLMLLKGSTRKKKKG) in rat full-thickness wound model at two different time points (7 and 21 days). Histological evaluations were assessed for wound closure, epithelialization, angiogenesis, inflammatory, fibroblastic cellular infiltrations, and quantified using stereological methods (p < 0.05). Peptide A and B tethered to collagen scaffold using mTGase stimulated neovascularization, decreased the inflammatory cell infiltration and prominently enhanced the fibroblast proliferation which significantly accelerated the wound healing process. We conclude that surface modification by incorporating motif of laminin-332 α3 chain (peptide A: PPFLMLLK GSTR) domain and transglutaminase substrate to the laminin-332 α3 chain (peptide B: PPFLMLLKGSTREAQQIVM) using mTGase may be a potential candidate for tissue engineering applications and skin regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:2788-2795, 2013. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Resumo:
Objective- Increased reactive oxygen species (ROS) production is involved in the pathophysiology of endothelial dysfunction. NADPH oxidase-4 (Nox4) is a ROS-generating enzyme expressed in the endothelium, levels of which increase in pathological settings. Recent studies indicate that it generates predominantly hydrogen peroxide (H O ), but its role in vivo remains unclear. Methods and Results- We generated transgenic mice with endothelium-targeted Nox4 overexpression (Tg) to study the in vivo role of Nox4. Tg demonstrated significantly greater acetylcholine- or histamine-induced vasodilatation than wild-type littermates. This resulted from increased H O production and H O -induced hyperpolarization but not altered nitric oxide bioactivity. Tg had lower systemic blood pressure than wild-type littermates, which was normalized by antioxidants. Conclusion- Endothelial Nox4 exerts potentially beneficial effects on vasodilator function and blood pressure that are attributable to H O production. These effects contrast markedly with those reported for Nox1 and Nox2, which involve superoxide-mediated inactivation of nitric oxide. Our results suggest that therapeutic strategies to modulate ROS production in vascular disease may need to separately target individual Nox isoforms. © 2011 American Heart Association, Inc.
Resumo:
Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.
Resumo:
Objectives Curcuma zedoaroides A. Chaveerach & T. Tanee, locally known as Wan-Paya-Ngoo-Tua-Mia, is commonly used in the North-Eastern part of Thailand as a 'snakebite antidote'. The aim of this study was to isolate the active compound from the rhizome of C. zedoaroides, to determine its structure and to assess its antagonistic activity in vitro and in vivo against King cobra venom. Methods The active compound was obtained from C. zedoaroides by extraction with acetone followed by purification using column chromatography; its X-ray structure was determined. Its inhibition of venom lethality was studied in vitro in rat phrenic nerve-hemidiaphragms and in vivo in mice. Key findings The acetone extract of the Curcuma rhizomes contained a C20 dialdehyde, [2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene] -succinaldehyde, as the major component. The isolated curcuma dialdehyde was found active in vitro and in vivo for antivenin activity against the King cobra venom. Using isolated rat phrenic nerve-hemidiaphragm preparations, a significant antagonistic effect on the inhibition of neuromuscular transmission was observed in vitro. Inhibition on muscle contraction, produced by the 4 μg/ml venom, was reversed by 2-16 μg/ml of Curcuma dialdehyde in organ bath preparations over a period of 2 h. Mice intraperitoneally injected with 0.75 mg/kg venom and dialdehyde at 100 mg/kg had a significantly increased survival time. Injection of Curcuma dialdehyde (100 mg/kg) 30 min before the subcutaneous injection of the venom resulted in a 100% survival time after 2 h compared with 0% for the control group. Conclusions The in vitro and in vivo evaluation confirmed the medicinal use of traditional snake plants against snakebites. The bioactivity is linked to an isolated molecule and not a result of synergistic effects of a mixture. The active compound was isolated and the structure fully elucidated, including its stereochemistry. This dialdehyde is a versatile chemical building block and can be easily obtained from this plant source. © 2010 Royal Pharmaceutical Society of Great Britain.
Resumo:
A novel trileaflet polymer valve is a composite design of a biostable polymer poly(styrene-isobutylene-styrene) (SIBS) with a reinforcement polyethylene terephthalate (PET) fabric. Surface roughness and hydrophilicity vary with fabrication methods and influence leaflet biocompatibility. The purpose of this study was to investigate the biocompatibility of this composite material using both small animal (nonfunctional mode) and large animal (functional mode) models. Composite samples were manufactured using dip coating and solvent casting with different coating thickness (251μm and 50μm). Sample's surface was characterized through qualitative SEM observation and quantitative surface roughness analysis. A novel rat abdominal aorta model was developed to test the composite samples in a similar pulsatile flow condition as its intended use. The sample's tissue response was characterized by histological examination. Among the samples tested, the 25μm solvent-cast sample exhibited the smoothest surface and best biocompatibility in terms of tissue capsulation thickness, and was chosen as the method for fabrication of the SIBS valve. Phosphocholine was used to create a hydrophilic surface on selected composite samples, which resulted in improved blood compatibility. Four SIBS valves (two with phosphocholine modification) were implanted into sheep. Echocardiography, blood chemistry, and system pathology were conducted to evaluate the valve's performance and biocompatibility. No adverse response was identified following implantation. The average survival time was 76 days, and one sheep with the phosphocholine modified valve passed the FDA minimum requirement of 140 days with approximately 20 million cycles of valve activity. The explanted valves were observed under the aid of a dissection microscope, and evaluated via histology, SEM and X-ray. Surface cracks and calcified tissue deposition were found on the leaflets. In conclusion, we demonstrated the applicability of using a new rat abdominal aorta model for biocompatibility assessment of polymeric materials. A smooth and complete coating surface is essential for the biocompatibility of PET/SIBS composite, and surface modification using phosphocholine improves blood compatibility. Extrinsic calcification was identified on the leaflets and was associated with regions of surface cracks.
Resumo:
Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.
Resumo:
Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.
Resumo:
The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels.
Resumo:
PURPOSE:
To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo.
METHODS:
Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film.
RESULTS:
Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion.
CONCLUSIONS:
For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.
Resumo:
Introdução – A dosimetria in vivo é útil na medição da dose administrada aos doentes durante o tratamento, avaliando diferenças significativas entre a dose prescrita e a dose administrada no volume alvo, bem como nos órgãos de risco. Objetivo – Comparar a dose medida com a dose calculada em doentes com tumores de mama com e sem filtro físico. Métodos – Realizaram-se medições da dose na pele, utilizando díodos tipo–p, para os campos tangenciais e respetivos field-in-field em 38 doentes. Resultados – Verificaram-se diferenças estatisticamente significativas nos campos tangenciais open (ρ=0,000). Discussão – Estudos reportam desvios sistemáticos significativos entre a dose calculada e a dose medida. Conclusão – Com este estudo conclui-se que não existe influência nas doses devido à presença do filtro físico.
Resumo:
Purpose To evaluate the possible use of soft contact lenses (CL) to improve the secretagogue role of diadenosine tetraphosphate (Ap4A) promoting tear secretion. Methods Two conventional hydrogel CL (Omafilcon A and Ocufilcon D) and two silicone hydrogel (SiH) CL (Comfilcon A and Balafilcon A) were used. Ap4A was loaded into the lenses by soaking in a 1 mM Ap4A solution during 12 h. In vitro experiments were performed by placing the lenses in multi-wells during 2 h containing 1 ml of ultrapure water. 100 μl aliquots were taken at time zero and every minute for the first 10 min, and then every 15 min. In vivo experiments were performed in New Zealand rabbits and both the dinucleotide release from SiH and tear secretion were measured by means of Schirmer strips and high-pressure liquid chromatography (HPLC) analysis. Results Ap4A in vitro release experiments in hydrogel CL presented a release time 50 (RT50) of 3.9 ± 0.2 min and 3.1 ± 0.1 min for the non-ionic and the ionic CL, respectively. SiH CL released also Ap4A with RT50 values of 5.1 ± 0.1 min for the non-ionic and 2.7 ± 0.1 min for the ionic CL. In vivo experiments with SiH CL showed RT50 values of 9.3 ± 0.2 min and 8.5 ± 0.2 min for the non-ionic and the ionic respectively. The non-ionic lens Ap4A release was able to induce tear secretion above baseline tear levels for almost 360 min. Conclusion The delivery of Ap4A is slower and the effect lasts longer with non-ionic lenses than ionic lenses.
Resumo:
This thesis focuses on biological activity of pyrrole-imidazole polyamides in vivo. The work presented includes experiments underlining sequence selectivity of these compounds in living cells and potential methods to improve it. A large fraction of this thesis is devoted to activity of Py-Im in murine models of cancer. We investigated the pharmacokinetics and biodistribution of two compounds – targeted to 5'-WGGWCW-3' and 5'-WTWCGW-3' sequences – and characterized their activity by measuring their effects on tumor growth, gene expression in vivo and in tissue culture, and their effects on physiology of tumors. The initial theoretical studies suggested that a large fraction of genomic sites are bound by Py-Im polyamides non-specifically and experimental data shows that the programmed binding sequence is not a sole determinant of the patterns of gene regulation. Despite the likely presence of non-specific effects of Py-Im polyamides in living cells, in vivo administration of Py-Im polyamides resulted in tolerable host toxicity and anti-tumor activity. Py-Im polyamide targeted to Estrogen Receptor Response Element showed downregulation of ER-driven gene expression in tumor cells, while the compound targeted to hypoxia response element reduced vascularization of tumors and their growth rate, induced apoptosis of cells in hypoxic areas and reduced expression of proangiogenic and prometastatic factors. Further studies, showed that polyamides distributed to many of the tested tissues and their FITC-conjugates showed nuclear uptake. The gene expression effects were also present in murine tissues, such as liver and kidneys, indicating a potential for use for Py-Im polyamides in non-cancerous diseases.
Resumo:
The central oscillator of the cyanobacterial circadian clock is unique in the biochemical simplicity of its components and the robustness of the oscillation. The oscillator is composed of three cyanobacterial proteins: KaiA, KaiB, and KaiC. If very pure preparations of these three proteins are mixed in a test tube in the right proportions and with ATP and MgCl2, the phosphorylation states of KaiC will oscillate with a circadian period, and these states can be analyzed simply by SDS-PAGE. The purity of the proteins is critical for obtaining robust oscillation. Contaminating proteases will destroy oscillation by degradation of Kai proteins, and ATPases will attenuate robustness by consumption of ATP. Here, we provide a detailed protocol to obtain pure recombinant proteins from Escherichia coli to construct a robust cyanobacterial circadian oscillator in vitro. In addition, we present a protocol that facilitates analysis of phosphorylation states of KaiC and other phosphorylated proteins from in vivo samples.