924 resultados para INTRINSIC NOISE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migratory marine vertebrates move annually across remote oceanic water masses crossing international borders. Many anthropogenic threats such as overfishing, bycatch, pollution or global warming put millions of marine migrants at risk especially during their long-distance movements. Therefore, precise knowledge about these migratory movements to understand where and when these animals are more exposed to human impacts is vital for addressing marine conservation issues. Because electronic tracking devices suffer from several constraints, mainly logistical and financial, there is emerging interest in finding appropriate intrinsic markers, such as the chemical composition of inert tissues, to study long-distance migrations and identify wintering sites. Here, using tracked pelagic seabirds and some of their own feathers which were known to be grown at different places and times within the annual cycle, we proved the value of biogeochemical analyses of inert tissue as tracers of marine movements and habitat use. Analyses of feathers grown in summer showed that both stable isotope signatures and element concentrations can signal the origin of breeding birds feeding in distinct water masses. However, only stable isotopes signalled water masses used during winter because elements mainly accumulated during the long breeding period are incorporated into feathers grown in both summer and winter. Our findings shed new light on the simple and effective assignment of marine organisms to distinct oceanic areas, providing new opportunities to study unknown migration patterns of secretive species, including in relation to human-induced mortality on specific populations in the marine environment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities have serious impacts on marine apex predators. Inadequate knowledge of the spatial and trophic ecology of these marine animals ultimately compromises the viability of their populations and impedes our ability to use them as environmental biomonitors. Intrinsic biogeochemical markers, such as stable isotopes, fatty acids, trace elements, and chemical pollutants, are increasingly being used to trace the spatial and trophic ecology of marine top predators. Notable advances include the emergence of the first oceanographic"isoscapes" (isotopic geographic gradients), the advent of compound-specific isotopic analyses, improvements in diet reconstruction through Bayesian statistics, and tissue analysis of tracked animals to ground-truth biogeochemical profiles. However, most researchers still focus on only a few tracers. Moreover, insufficient knowledge of the biogeochemical integration in tissues, fractionation and routing processes, and geographic and temporal variability in baseline levels continue to hamper the resolution and potential of these markers in studying the spatial and feeding ecology of top predators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mathematical modeling the estimation of the model parameters is one of the most common problems. The goal is to seek parameters that fit to the measurements as well as possible. There is always error in the measurements which implies uncertainty to the model estimates. In Bayesian statistics all the unknown quantities are presented as probability distributions. If there is knowledge about parameters beforehand, it can be formulated as a prior distribution. The Bays’ rule combines the prior and the measurements to posterior distribution. Mathematical models are typically nonlinear, to produce statistics for them requires efficient sampling algorithms. In this thesis both Metropolis-Hastings (MH), Adaptive Metropolis (AM) algorithms and Gibbs sampling are introduced. In the thesis different ways to present prior distributions are introduced. The main issue is in the measurement error estimation and how to obtain prior knowledge for variance or covariance. Variance and covariance sampling is combined with the algorithms above. The examples of the hyperprior models are applied to estimation of model parameters and error in an outlier case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shot-noise suppression is investigated in nondegenerate diffusive conductors by means of an ensemble Monte Carlo simulator. The universal 1/3 suppression value is obtained when transport occurs under elastic collision regime provided the following conditions are satisfied: (i) The applied voltage is much larger than the thermal value; (ii) the length of the device is much greater than both the elastic mean free path and the Debye length. By fully suppressing carrier-number fluctuations, long-range Coulomb interaction is essential to obtain the 1/3 value in the low-frequency limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theory of the surface noise in a nonhomogeneous conductive channel adjacent to an insulating layer. The theory is based on the Langevin approach which accounts for the microscopic sources of fluctuations originated from trapping¿detrapping processes at the interface and intrachannel electron scattering. The general formulas for the fluctuations of the electron concentration, electric field as well as the current-noise spectral density have been derived. We show that due to the self-consistent electrostatic interaction, the current noise originating from different regions of the conductive channel appears to be spatially correlated on the length scale correspondent to the Debye screening length in the channel. The expression for the Hooge parameter for 1/f noise, modified by the presence of Coulomb interactions, has been derived