531 resultados para Hilbert, Mòduls de
Resumo:
A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in its distribution function. The empirical distribution function for the 1960-2000 period is close to a Weibull distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no apparent local multimodality or bimodality. The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being normally distributed. This is consistent with the central limit theorem, which applies to the construction of the wave amplitude index. For the period 1960-70 it is found that there is apparent bimodality in this index. However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single longitude. As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show approximately normal distributions. The author concludes that these techniques may therefore be suboptimal to detect any multimodality.
Resumo:
We study the elliptic sine-Gordon equation in the quarter plane using a spectral transform approach. We determine the Riemann-Hilbert problem associated with well-posed boundary value problems in this domain and use it to derive a formal representation of the solution. Our analysis is based on a generalization of the usual inverse scattering transform recently introduced by Fokas for studying linear elliptic problems.
Resumo:
A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrödinger equation and to its linearized version in the domain {x≥l(t), t≥0}. We show that there exist two cases: (a) if l″(t)<0, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann-Hilbert problem, which is defined on a time-dependent contour; (b) if l″(t)>0, then the Riemann-Hilbert problem is replaced by a respective scalar or matrix problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.
Resumo:
Time/frequency and temporal analyses have been widely used in biomedical signal processing. These methods represent important characteristics of a signal in both time and frequency domain. In this way, essential features of the signal can be viewed and analysed in order to understand or model the physiological system. Historically, Fourier spectral analyses have provided a general method for examining the global energy/frequency distributions. However, an assumption inherent to these methods is the stationarity of the signal. As a result, Fourier methods are not generally an appropriate approach in the investigation of signals with transient components. This work presents the application of a new signal processing technique, empirical mode decomposition and the Hilbert spectrum, in the analysis of electromyographic signals. The results show that this method may provide not only an increase in the spectral resolution but also an insight into the underlying process of the muscle contraction.
Resumo:
Tremor is a clinical feature characterized by oscillations of a part of the body. The detection and study of tremor is an important step in investigations seeking to explain underlying control strategies of the central nervous system under natural (or physiological) and pathological conditions. It is well established that tremorous activity is composed of deterministic and stochastic components. For this reason, the use of digital signal processing techniques (DSP) which take into account the nonlinearity and nonstationarity of such signals may bring new information into the signal analysis which is often obscured by traditional linear techniques (e.g. Fourier analysis). In this context, this paper introduces the application of the empirical mode decomposition (EMD) and Hilbert spectrum (HS), which are relatively new DSP techniques for the analysis of nonlinear and nonstationary time-series, for the study of tremor. Our results, obtained from the analysis of experimental signals collected from 31 patients with different neurological conditions, showed that the EMD could automatically decompose acquired signals into basic components, called intrinsic mode functions (IMFs), representing tremorous and voluntary activity. The identification of a physical meaning for IMFs in the context of tremor analysis suggests an alternative and new way of detecting tremorous activity. These results may be relevant for those applications requiring automatic detection of tremor. Furthermore, the energy of IMFs was visualized as a function of time and frequency by means of the HS. This analysis showed that the variation of energy of tremorous and voluntary activity could be distinguished and characterized on the HS. Such results may be relevant for those applications aiming to identify neurological disorders. In general, both the HS and EMD demonstrated to be very useful to perform objective analysis of any kind of tremor and can therefore be potentially used to perform functional assessment.
Resumo:
Transient neural assemblies mediated by synchrony in particular frequency ranges are thought to underlie cognition. We propose a new approach to their detection, using empirical mode decomposition (EMD), a data-driven approach removing the need for arbitrary bandpass filter cut-offs. Phase locking is sought between modes. We explore the features of EMD, including making a quantitative assessment of its ability to preserve phase content of signals, and proceed to develop a statistical framework with which to assess synchrony episodes. Furthermore, we propose a new approach to ensure signal decomposition using EMD. We adapt the Hilbert spectrum to a time-frequency representation of phase locking and are able to locate synchrony successfully in time and frequency between synthetic signals reminiscent of EEG. We compare our approach, which we call EMD phase locking analysis (EMDPL) with existing methods and show it to offer improved time-frequency localisation of synchrony.
Resumo:
This book is a collection of articles devoted to the theory of linear operators in Hilbert spaces and its applications. The subjects covered range from the abstract theory of Toeplitz operators to the analysis of very specific differential operators arising in quantum mechanics, electromagnetism, and the theory of elasticity; the stability of numerical methods is also discussed. Many of the articles deal with spectral problems for not necessarily selfadjoint operators. Some of the articles are surveys outlining the current state of the subject and presenting open problems.
Resumo:
We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.
Resumo:
In Peer-to-Peer (P2P) networks, it is often desirable to assign node IDs which preserve locality relationships in the underlying topology. Node locality can be embedded into node IDs by utilizing a one dimensional mapping by a Hilbert space filling curve on a vector of network distances from each node to a subset of reference landmark nodes within the network. However this approach is fundamentally limited because while robustness and accuracy might be expected to improve with the number of landmarks, the effectiveness of 1 dimensional Hilbert Curve mapping falls for the curse of dimensionality. This work proposes an approach to solve this issue using Landmark Multidimensional Scaling (LMDS) to reduce a large set of landmarks to a smaller set of virtual landmarks. This smaller set of landmarks has been postulated to represent the intrinsic dimensionality of the network space and therefore a space filling curve applied to these virtual landmarks is expected to produce a better mapping of the node ID space. The proposed approach, the Virtual Landmarks Hilbert Curve (VLHC), is particularly suitable for decentralised systems like P2P networks. In the experimental simulations the effectiveness of the methods is measured by means of the locality preservation derived from node IDs in terms of latency to nearest neighbours. A variety of realistic network topologies are simulated and this work provides strong evidence to suggest that VLHC performs better than either Hilbert Curves or LMDS use independently of each other.
Resumo:
This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary movements from experimental signals collected from 31 patients with different conditions. Our results also suggest that the tremor may be described by a new class of mathematical functions defined in the HA framework. In a further study, the HS was employed for visualization of the energy activities of signals. This tool introduces the concept of instantaneous frequency in the field of tremor. In addition, it could provide, in a time-frequency-energy plot, a clear visualization of local activities of tremor energy over the time. The HA demonstrated to be very useful to perform objective measurements of any kind of tremor and can therefore be used to perform functional assessment.
Resumo:
This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary movements from experimental signals collected from 31 patients with different conditions. Our results also suggest that the tremor may be described by a new class of mathematical functions defined in the HA framework. In a further study, the HS was employed for visualization of the energy activities of signals. This tool introduces the concept of instantaneous frequency in the field of tremor. In addition, it could provide, in a time-frequency energy plot, a clear visualization of local activities of tremor energy over the time. The HA demonstrated to be very useful to perform objective measurements of any kind of tremor and can therefore be used to perform functional assessment.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.