986 resultados para Higher Harmonic Generation
Resumo:
We study the one-loop low-energy effective action for the higher-derivative superfield gauge theory coupled to chiral matter.
Resumo:
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.
Resumo:
200 GeV corresponding to baryon chemical potentials (mu(B)) between 200 and 20 MeV. Our measurements of the products kappa sigma(2) and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the root s(NN) dependence of kappa sigma(2). From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu(B) below 200 MeV.
Resumo:
We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]
Resumo:
We have shown that higher-dimensional Reissner-Nordstrom-de Sitter black holes are gravitationally unstable for large values of the electric charge and cosmological constant in D >= 7 space-time dimensions. We have found the shape of the slightly perturbed black hole at the threshold point of instability.
Resumo:
We study the stability of AdS black holes rotating in a single two-plane for tensor-type gravitational perturbations in D > 6 space-time dimensions. First, by an analytic method, we show that there exists no unstable mode when the magnitude a of the angular momentum is smaller than r(h)(2)/R, where r(h) is the horizon radius and R is the AdS curvature radius. Then, by numerical calculations of quasinormal modes, using the separability of the relevant perturbation equations, we show that an instability occurs for rapidly rotating black holes with a > r(h)(2)/R, although the growth rate is tiny (of order 10(-12) of the inverse horizon radius). We give numerical evidence indicating that this instability is caused by superradiance.
Resumo:
We investigate stability of the D-dimensional Reissner-Nordstrom-anti-de Sitter metrics as solutions of the Einstein-Maxwell equations. We have shown that asymptotically anti-de Sitter (AdS) black holes are dynamically stable for all values of charge and anti-de Sitter radius in D=5,6...11 dimensional space-times. This does not contradict dynamical instability of RNAdS black holes found by Gubser in N=8 gauged supergravity, because the latter instability comes from the tachyon mode of the scalar field, coupled to the system. Asymptotically AdS black holes are known to be thermodynamically unstable for some region of parameters, yet, as we have shown here, they are stable against gravitational perturbations.
Resumo:
In this work we study the dynamical generation of mass in the massless N = 1 Wess-Zumino model in a three-dimensional spacetime. Using the tadpole method to compute the effective potential, we observe that supersymmetry is dynamically broken together with the discrete symmetry A(x) -> A(x). We show that this model, different from nonsupersymmetric scalar models, exhibits a consistent perturbative dynamical generation of mass after two-loop corrections to the effective potential.
Resumo:
A technique is proposed for creating nonground-state Bose-Einstein condensates in a trapping potential by means of the temporal modulation of atomic interactions. Applying a time-dependent spatially homogeneous magnetic field modifies the atomic scattering length. A modulation of the scattering length excites the condensate, which, under special conditions, can be transferred to an excited nonlinear coherent mode. It is shown that a phase-transition-like behavior occurs in the time-averaged population imbalance between the ground and excited states. The application of the technique is analyzed and it is shown that the considered effect can be realized for experimentally available condensates.
Resumo:
We report on a simple and accurate method for determination of thermo-optical and spectroscopic parameters (thermal diffusivity, temperature coefficient of the optical path length change, pump and fluorescence quantum efficiencies, thermal loading, thermal lens focal length, etc) of relevance in the thermal lensing of end-pumped neodymium lasers operating at 1.06- and 1.3-mu m channels. The comparison between thermal lensing observed in presence and absence of laser oscillation has been used to elucidate and evaluate the contribution of quantum efficiency and excited sate absorption processes to the thermal loading of Nd: YAG lasers. (c) 2008 Optical Society of America.
Resumo:
The stomatal density and index in compressed leaves of Glossopteris communis from two different roof shales from the Lower Permian in Parana Basin, Brazil (Western Gondwana) have been investigated to test the possible relationship with modeled global changes in atmospheric CO(2) during the Phanerozoic. The obtained parameters show that the genus Glossopteris from the Cool Temperate biome can be used as CO(2) -proxy, despite the impossibility of being compared with living relatives or equivalents. When confronted with already published data for the Tropical Summer Wet biome, the present results confirm the detection of low levels of atmospheric CO(2) during the Early Permian, as predicted by the modeled curve. Nevertheless, the lower stomatal numbers detected at the climax of the coal interval (Faxinal Coalfield, Sakmarian) when compared to the higher ones obtained in leaves from a younger interval (Figueira Coalfield, Artinskian) could be attributed to temporarily high levels of atmospheric CO(2). Therefore, the occurrence of an extensive peat generating event at the southern part of the basin and subsequent greenhouse gases emissions from this environment may have been enough to reverse regionally and temporarily the reduction trend in atmospheric CO(2). Additionally, the Faxinal flora is preserved in a tonstein layer, which is a record of volcanic activity that could also cause a rise in atmospheric CO(2). During the Artinskian, the scarce generation of peat mires, as revealed by the occurrence of thin and discontinuous coal layers, and the lack of volcanism evidence would be insufficient to affect the general low CO(2) trend.
Resumo:
Background: The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results: We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion: We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction.
Resumo:
The decomposition of peroxynitrite to nitrite and dioxygen at neutral pH follows complex kinetics, compared to its isomerization to nitrate at low pH. Decomposition may involve radicals or proceed by way of the classical peracid decomposition mechanism. Peroxynitrite (ONOOH/ONOO(-)) decomposition has been proposed to involve formation of peroxynitrate (O(2)NOOH/O(2)NOO(-)) at neutral pH (D. Gupta, B. Harish, R. Kissner and W. H. Koppenol, Dalton Trans., 2009, DOI: 10.1039/b905535e, see accompanying paper in this issue). Peroxynitrate is unstable and decomposes to nitrite and dioxygen. This study aimed to investigate whether O(2)NOO(-) formed upon ONOOH/ONOO(-) decomposition generates singlet molecular oxygen [O(2) ((1)Delta(g))]. As unequivocally revealed by the measurement of monomol light emission in the near infrared region at 1270 nm and by chemical trapping experiments, the decomposition of ONOO(-) or O(2)NOOH at neutral to alkaline pH generates O(2) ((1)Delta(g)) at a yield of ca. 1% and 2-10%, respectively. Characteristic light emission, corresponding to O(2) ((1)Delta(g)) monomolecular decay was observed for ONOO(-) and for O(2)NOOH prepared by reaction of H(2)O(2) with NO(2)BF(4) and of H(2)O(2) with NO(2)(-) in HClO(4). The generation of O(2) ((1)Delta(g)) from ONOO(-) increased in a concentration-dependent manner in the range of 0.1-2.5 mM and was dependent on pH, giving a sigmoid pro. le with an apparent pK(a) around pD 8.1 (pH 7.7). Taken together, our results clearly identify the generation of O(2) ((1)Delta(g)) from peroxynitrate [O(2)NOO(-) -> NO(2)(-) + O(2) ((1)Delta(g))] generated from peroxynitrite and also from the reactions of H(2)O(2) with either NO(2)BF(4) or NO(2)(-) in acidic media.
Resumo:
Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region`s predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.
Resumo:
Recent fears of terrorism have provoked an increase in delays and denials of transboundary shipments of radioisotopes. This represents a serious constraint to sterile insect technique (SIT) programs around the world as they rely on the use of ionizing radiation from radioisotopes for insect sterilization. To validate a novel X ray irradiator, a series of studies on Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) were carried out, comparing the relative biological effectiveness (RBE) between X rays and traditional gamma radiation from (60)Co. Male C. capitata pupae and pupae of both sexes of A. fraterculus, both 24 - 48 h before adult emergence, were irradiated with doses ranging from 15 to 120 Gy and 10-70 Gy, respectively. Estimated mean doses of 91.2 Gy of X and 124.9 Gy of gamma radiation induced 99% sterility in C. capitata males, Irradiated A. fraterculus were 99% sterile at approximate to 40-60 Gy for both radiation treatments. Standard quality control parameters and mating indices were not significantly affected by the two types of radiation. The RBE did not differ significantly between the tested X and gamma radiation, and X rays are as biologically effective for SIT purposes as gamma rays are. This work confirms the suitability of this new generation of X ray irradiators for pest control programs that integrate the SIT.