405 resultados para Hamming Cube
Resumo:
Corresponding to $C_{0}[n,n-r]$, a binary cyclic code generated by a primitive irreducible polynomial $p(X)\in \mathbb{F}_{2}[X]$ of degree $r=2b$, where $b\in \mathbb{Z}^{+}$, we can constitute a binary cyclic code $C[(n+1)^{3^{k}}-1,(n+1)^{3^{k}}-1-3^{k}r]$, which is generated by primitive irreducible generalized polynomial $p(X^{\frac{1}{3^{k}}})\in \mathbb{F}_{2}[X;\frac{1}{3^{k}}\mathbb{Z}_{0}]$ with degree $3^{k}r$, where $k\in \mathbb{Z}^{+}$. This new code $C$ improves the code rate and has error corrections capability higher than $C_{0}$. The purpose of this study is to establish a decoding procedure for $C_{0}$ by using $C$ in such a way that one can obtain an improved code rate and error-correcting capabilities for $C_{0}$.
Resumo:
The local anesthetic articaine (ATC) is widely used in dentistry; however, its side effects can include paresthesia and nerve injury. Polymeric nanocapsules (PN) can be used as carriers for drugs, and help to reduce undesirable symptoms. The objective of this study was to evaluate the influence of different factors on the average size, polydispersion, and encapsulation efficiency of PN containing ATC. Poly(ε-caprolactone) (PCL) nanocapsules containing ATC were prepared by the oil-in-water emulsion/solvent evaporation method. The final ATC concentration was 2%. The preparation conditions were optimized using a central composite blocked cube-star design to investigate the influence of two variables at five levels, with 22 factorial points (–1 and +1), two replicates of the central point, 2×2 axial points (–1.414 and +1.414), and an orthogonal distribution, resulting in 10 experiments. The factors varied were the PVA concentration and the sonication time. The nanocapsules showed a satisfactory size range, a polydispersivity index less than 0.2, and high encapsulation efficiency. The values of the factors had no significant influence on either average size or polydispersion, although the encapsulation efficiency was significantly influenced by the sonication time. Improved formulations were identified using the central composite design, which revealed that the main consideration in selecting a suitable formulation was the encapsulation efficiency. Two of the formulations showed both high encapsulation efficiency and colloidal characteristics appropriate for the route of administration.
Resumo:
In the present work, we report the synthesis and characterization of NaNbO3 particles obtained by microwave-assisted hydrothermal method from Nb2O5 and NaOH. The synthesis was made at different periods at 180 °C and 300W. The crystallization of NaNbO3 structures produced Na2Nb2O6.H2O in the intermediate phase with fiber-like morphology, and this is associated with the synthesis time. Pure orthorhombic NaNbO3 with cube-like morphology originates after synthesizing for 240 minutes. To verify the remnant polarization of particles, films were obtained by electrophoresis process and sintered at 800°C for 10 minutes in a microwave furnace. The films characterization indicated that films of niobate with fiber-like morphology present remaining polarization, and the morphology of cubes did not show remaining polarization. Considering these results, it can be concluded that the morphology implemented ferroelectric property of NaNbO3.
Resumo:
Linear resonant harvesters have been the most common type of generators used to scavenge energy from mechanical vibrations. When subject to harmonic excitation, good performance is achieved once the device is tuned so that its natural frequency coincides with the excitation frequency. In such a situation, the average power harvested in a cycle is proportional to the cube of the excitation frequency and inversely proportional to the suspension damping, which is sought to be very low. However, a very low damping involves a relatively long transient in the system response, where the classical formulation adopted for steady-state regimes do not hold. This paper presents an investigation into the design of a linear resonant harvester to scavenge energy from time-limited harmonic excitations involving a transient response, which could be more likely in some practical situations. An application is presented considering train-induced vibrations.
Resumo:
A novel optical setup for imaging through reflection holography with Bi12TiO20 (BTO) sillenite photorefractive crystals is proposed. Aiming a compact, robust and simple optical setup the lensless Denisiuk arrangement was chosen, using a He-Ne red laser as light source. In this setup the holographic medium is placed between the light source and the object. The beam impinging the crystal front face is the reference one, while the light scattered by the surface is the object beam in a holographic recording by diffusion. In order to allow the readout of the diffracted wave only and to keep the setup simplicity a polarizing beam splitter cube (PBS) was positioned at the BTO input. The reference beam is s-polarized (polarization direction perpendicular to the table top) and the crystal. 〈001〉-axis is rotated by an angle γ with respect to the input polarization in order to make the transmitted object beam and the diffracted beam to have orthogonal polarizations. While the transmitted wave is reflected by the PBS at a right angle, the diffracted wave carrying the holographic reconstruction of the object passes through the PBS, being collected by a positive lens in order to form the holographic image at a CCD camera. The holographic recording with the grating vector is parallel to the 〈100〉-axis. An expression for the diffracted wave intensity as a function of γ was derived, and this relation was experimentally investigated. © 2008 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.
Resumo:
A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}<110> component, predominated in the as-cast condition and was transformed into brass, copper and S type textures during the cold rolling process. There was practically no difference between the deformation textures at the two thickness reductions.
Resumo:
[EN]We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure...
Resumo:
[EN]The meccano method is a novel and promising mesh generation method for simultaneously creating adaptive tetrahedral meshes and volume parametrizations of a complex solid. We highlight the fact that the method requires minimum user intervention and has a low computational cost. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The new mesh generator combines an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. At present, the procedure is fully automatic for a genus-zero solid. In this case, the meccano can be a single cube. The efficiency of the proposed technique is shown with several applications...
Resumo:
[EN]We present a new method to construct a trivariate T-spline representation of complex genuszero solids for the application of isogeometric analysis. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points sited both on the inner and on the surface of the solid...
Resumo:
[EN] This paper deals with the study of some new properties of the intrinsic order graph. The intrinsic order graph is the natural graphical representation of a complex stochastic Boolean system (CSBS). A CSBS is a system depending on an arbitrarily large number n of mutually independent random Boolean variables. The intrinsic order graph displays its 2n vertices (associated to the CSBS) from top to bottom, in decreasing order of their occurrence probabilities. New relations between the intrinsic ordering and the Hamming weight (i.e., the number of 1-bits in a binary n-tuple) are derived. Further, the distribution of the weights of the 2n nodes in the intrinsic order graph is analyzed…