786 resultados para Graphite-epoxy composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes an integrated micro/macro mechanical study of the elastic-viscoplastic behavior of unidirectional metal matrix composites (MMC). The micromechanical analysis of the elastic moduli is based on the Composites Cylinder Assemblage model (CCA) with comparisons also draw with a Representative Unit Cell (RUC) technique. These "homogenization" techniques are later incorporated into the Vanishing Fiber Diameter (VFD) model and a new formulation is proposed. The concept of a smeared element procedure is employed in conjunction with two different versions of the Bodner and Partom elastic-viscoplastic constitutive model for the associated macroscopic analysis. The formulations developed are also compared against experimental and analytical results available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Fibre Reinforced Carbon (CFRC) Composites are increasing their applications due to their high strength and Young’s Modulus at high temperatures in inert atmosphere. Although much work has been done on processing and structure and properties relationship, few studies have addressed the modelling of mechanical properties. This work is divided in two parts. In the first part, a modelling of mechanical properties was carried out for two bi-directional composites using a model based on the Bernoulli-Euler theory for symmetric laminated beams. In the second part, acoustic emission (AE) was used as an auxiliary technique for monitoring the failure process of the composites. Differences in fracture behaviour are reflected in patterns of AE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this thesis is to study the effect of mineral fillers on the properties of extruded wood-polypropylene composites (WPC). The studied minerals are Talc, Calcite (CaCO3), two quantities of Wollastonite and Soapstone, and the level of mineral addition is 20 w-%. The study shows that mineral fillers can be used to modify and improve the properties of woodplastic composites. Especially the moisture-related properties of WPCs were found to be improved significantly by mineral addition. As the WPCs of the studied type are commonly used in outdoor applications, this is of importance in terms of usability. In machining, the addition of two minerals retained the surface roughness at same level throughout the test, indicating a favorable effect on machinability. The use of hard minerals shortened the tool life in machining. In general, a modest increase in density was observed. In many of the studied properties, no apparent influence of mineral addition was found, indicating that the properties were not weakened. An overall result was that talc showed the best overall performance, indicating that it can be used as an active filler improving most of the studied properties, especially moisture resistance. Calcite was found to have nearly similar performance. According to the findings, mineral addition to wood-plastic composites appears to be beneficial; especially moisture resistance can be enhanced without diminishing the other properties or usability in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene is a material with extraordinary properties. Its mechanical and electrical properties are unparalleled but the difficulties in its production are hindering its breakthrough in on applications. Graphene is a two-dimensional material made entirely of carbon atoms and it is only a single atom thick. In this work, properties of graphene and graphene based materials are described, together with their common preparation techniques and related challenges. This Thesis concentrates on the topdown techniques, in which natural graphite is used as a precursor for the graphene production. Graphite consists of graphene sheets, which are stacked together tightly. In the top-down techniques various physical or chemical routes are used to overcome the forces keeping the graphene sheets together, and many of them are described in the Thesis. The most common chemical method is the oxidisation of graphite with strong oxidants, which creates a water-soluble graphene oxide. The properties of graphene oxide differ significantly from pristine graphene and, therefore, graphene oxide is often reduced to form materials collectively known as reduced graphene oxide. In the experimental part, the main focus is on the chemical and electrochemical reduction of graphene oxide. A novel chemical route using vanadium is introduced and compared to other common chemical graphene oxide reduction methods. A strong emphasis is placed on electrochemical reduction of graphene oxide in various solvents. Raman and infrared spectroscopy are both used in in situ spectroelectrochemistry to closely monitor the spectral changes during the reduction process. These in situ techniques allow the precise control over the reduction process and even small changes in the material can be detected. Graphene and few layer graphene were also prepared using a physical force to separate these materials from graphite. Special adsorbate molecules in aqueous solutions, together with sonic treatment, produce stable dispersions of graphene and few layer graphene sheets in water. This mechanical exfoliation method damages the graphene sheets considerable less than the chemical methods, although it suffers from a lower yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using cellulosic reinforcement to produce plastic composites is a globally growing trend. One of such materials are wood-plastic composites, which are an extensively studied group of materials for which the global industry is looking for new applications. Issues such as bondability, durability and fire resistance still require development to improve the usability of the wood-plastic composite material. Improvement of the usability of wood-plastic composites is studied in this thesis through the effects of using selected modification technology in wood and plastic industry. The applied modification methods are surface by mechanical abrasion and plasma, chemical impregnation of wood flour, and structural modification by the co-extrusion process. The study shows that the properties of WPC can be influenced by the selected modification methods. The selected methods are also found to be able to result as improvement in the properties of the material. The may also affect other than just the targeted properties of the end-product, either in a positive or a negative manner. Therefore modification as performance improvement should be considered as a caseby- case study. Introducing WPC materials for new applications can be done by using modification technology. Structuralmodification can possibly be used to reduce material costs of the modified WPC material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest towards wood-plastic composites (WPCs) is growing due to growing interest in materials with novel properties, which can replace more traditional materials, such as wood and plastic. The use of recycled materials in manufacture is also a bonus. However, the application ofWPCs has been limited because of their often poor mechanical and barrier properties, which can be improved by incorporation of the reinforcing fillers. Nanosized fillers, having a large surface area, can significantly increase interfacial interactions in the composite on molecular level, leading to materials with new properties. The review summarizes the development trends in the use on nanofillers for WPC design, which were reported in accessible literature during the last decade. The effect of the nanofillers on the mechanical properties, thermal stability, flammability and wettability ofWPC is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochromism, the phenomenon of reversible color change induced by a small electric charge, forms the basis for operation of several devices including mirrors, displays and smart windows. Although, the history of electrochromism dates back to the 19th century, only the last quarter of the 20th century has its considerable scientific and technological impact. The commercial applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success and exposed the potential of EC materials for future glass industry. It is evident from their patents that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these marketed devices, signifying the motivation of this thesis focusing on EC viologens. Among the family of electrochromes, viologens have been utilized in electrochromic devices (ECDs) for a while, due to its intensely colored radical cation formation induced by applying a small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected cyano groups yields viologen and polyviologen under successive electropolymerization using for example the cyclic voltammetry (CV) technique. For further development, a polyviologen-graphene composite system was fabricated, focusing at the stability of the PV electrochrome without sacrificing its excellent EC properties. High electrical conductivity, high surface area offered by graphene sheets together with its non-covalent interactions and synergism with PV significantly improved the electrochrome durability in the composite matrix. The work thereby continued in developing a CNP functionalized thiophene derivative and its copolymer for possible utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene derivative was synthesized and electropolymerized in order to explore enhancement in the EC contrast and overall EC performance. The findings suggest that such electroactive viologen/polyviologen systems and their nanostructured composite films as well as viologen functionalized conjugated polymers, can be potentially applied as an active EC material in future ECDs aiming at durable device performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Mecánica con especialidad en Materiales) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’avancement en âge est associé à plusieurs modifications cognitives, dont un déclin des capacités à mémoriser et/ou à rappeler les événements vécus personnellement. Il amène parallèlement une augmentation des faux souvenirs, c.-à-d. le rappel d’événements qui ne se sont pas réellement déroulés. Les faux souvenirs peuvent avoir d’importantes répercussions dans la vie quotidienne des personnes âgées et il importe donc de mieux comprendre ce phénomène en vieillissement normal. Des études ont démontré l’importance de la fonction des lobes temporaux médians (FTM)/mémoire et de la fonction des lobes frontaux (FF)/fonctions exécutives dans l’effet de faux souvenirs. Ainsi, la première étude de la thèse visait à valider en français une version adaptée d’une méthode proposée par Glisky, Polster, & Routhieaux (1995), permettant de mesurer ces fonctions cognitives (Chapitre 2). L’analyse factorielle de cette étude démontre que les scores neuropsychologiques associés à la mémoire se regroupent en un facteur, le facteur FTM/mémoire, alors que ceux associés aux fonctions exécutives se regroupent en un deuxième facteur, le facteur FF/fonctions exécutives. Des analyses « bootstrap » effectuées avec 1 000 ré-échantillons démontrent la stabilité des résultats pour la majorité des scores. La deuxième étude de cette thèse visait à éclairer les mécanismes cognitifs (FTM/mémoire et FF/fonctions exécutives) ainsi que théoriques de l’effet de faux souvenirs accru en vieillissement normal (Chapitre 3). La Théorie des Traces Floues (TTF; Brainerd & Reyna, 1990) propose des explications de l’effet de faux souvenirs pour lesquelles la FTM/mémoire semble davantage importante, alors que celles proposées par la Théorie de l’Activation et du Monitorage (TAM; Roediger, Balota, & Watson, 2001) sont davantage reliées à la FF/fonctions exécutives. Les tests neuropsychologiques mesurant la FTM/mémoire ainsi que ceux mesurant la FF/fonctions exécutives ont été administrés à 52 participants âgés (moyenne de 67,81 ans). Basé sur l’étude de validation précédente, un score composite de la FTM/mémoire et un score composite de la FF/fonctions exécutives ont été calculés pour chaque participant. Ces derniers ont d’abord été séparés en deux sous-groupes, un premier au score FTM/mémoire élevé (n = 29, âge moyen de 67,45 ans) et un deuxième au score FTM/mémoire faible (n = 23, âge moyen de 68,26 ans) en s’assurant de contrôler statistiquement plusieurs variables, dont le score de la FF/fonctions exécutives. Enfin, ces participants ont été séparés en deux sous-groupes, un premier au score FF/fonctions exécutives élevé (n = 26, âge moyen 68,08 ans) et un deuxième au score FF/fonctions exécutives faible (n = 25, âge moyen de 67,36 ans), en contrôlant les variables confondantes, dont le score de la FTM/mémoire. Les proportions de vraie et de fausse mémoire (cibles et leurres associatifs) ont été mesurées à l’aide d’un paradigme Deese-Roediger et McDermott (DRM; Deese, 1959; Roediger & McDermott, 1995), avec rappel et reconnaissance jumelée à une procédure « Je me souviens / Je sais » (Tulving, 1985) chez les 52 participants âgés ainsi que chez 22 jeunes (âge moyen de 24,59 ans), apparié pour les années de scolarité. D’abord, afin de tester l’hypothèse de la TTF (Brainerd & Reyna, 1990), ces proportions ont été comparées entre les jeunes adultes et les deux sous-groupes de personnes âgées catégorisées selon le score de la FTM/mémoire. Ensuite, afin de tester l’hypothèse de la TAM (Roediger et al., 2001), ces proportions ont été comparées entre les jeunes adultes et les deux sous-groupes de personnes âgées catégorisées selon le score de la FF/fonctions exécutives. Il s’agit de la première étude qui compare directement ces hypothèses à travers de nombreuses mesures de vraie et de fausse mémoire. Les résultats démontrent que seule la FTM/mémoire modulait l’effet d’âge en vraie mémoire, et de manière quelque peu indirecte, en fausse mémoire et dans la relation entre la vraie et la fausse remémoration. Ensuite, les résultats démontrent que seule la FF/fonctions exécutives jouerait un rôle dans la fausse reconnaissance des leurres associatifs. Par ailleurs, en des effets d’âge sont présents en faux rappel et fausse remémorations de leurres associatifs, entre les jeunes adultes et les personnes âgées au fonctionnement cognitif élevé, peu importe la fonction cognitive étudiée. Ces résultats suggèrent que des facteurs autres que la FTM/mémoire et la FF/fonctions exécutives doivent être identifiés afin d’expliquer la vulnérabilité des personnes âgées aux faux souvenirs. Les résultats de cette thèse sont discutés à la lumière des hypothèses théoriques et cognitives en faux souvenirs (Chapitre 4).