948 resultados para GROWTH-CONTROL
Resumo:
Transforming growth factor-beta (TGF-beta) and its related proteins regulate broad aspects of body development, including cell proliferation, differentiation, apoptosis and gene expression, in various organisms. Deregulated TGF-beta function has been causally implicated in the generation of human fibrotic disorders and in tumor progression. Nevertheless, the molecular mechanisms of TGF-beta action remained essentially unknown until recently. Here, we discuss recent progress in our understanding of the mechanism of TGF-beta signal transduction with respect to the regulation of gene expression, the control of cell phenotype and the potential usage of TGF-beta for the treatment of human diseases.
Resumo:
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.
Resumo:
Structural definition of the receptors for neurotropic and angiogenic modulators such as fibroblast growth factors and related polypeptides will yield insight into the mechanisms that control early development, embryogenesis, organogenesis, wound repair and neovessel formation. We isolated 3 murine cDNAs encoding different binding domains of these receptors (flg). Comparison of these ectoplasmic portions showed that two of the forms corresponded to previously described murine molecules whereas the third one had a different ectoplasmic portion generated by specific changes in two regions. Interestingly, expression of this third form seems to be restricted in its tissue distribution. Such modifications could influence the ligand specificity of the different receptors and/or their binding affinity.
Resumo:
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Resumo:
One of the key emphases of these three essays is to provide practical managerial insight. However, good practical insight, can only be created by grounding it firmly on theoretical and empirical research. Practical experience-based understanding without theoretical grounding remains tacit and cannot be easily disseminated. Theoretical understanding without links to real life remains sterile. My studies aim to increase the understanding of how radical innovation could be generated at large established firms and how it can have an impact on business performance as most businesses pursue innovation with one prime objective: value creation. My studies focus on large established firms with sales revenue exceeding USD $ 1 billion. Usually large established firms cannot rely on informal ways of management, as these firms tend to be multinational businesses operating with subsidiaries, offices, or production facilities in more than one country. I. Internal and External Determinants of Corporate Venture Capital Investment The goal of this chapter is to focus on CVC as one of the mechanisms available for established firms to source new ideas that can be exploited. We explore the internal and external determinants under which established firms engage in CVC to source new knowledge through investment in startups. We attempt to make scholars and managers aware of the forces that influence CVC activity by providing findings and insights to facilitate the strategic management of CVC. There are research opportunities to further understand the CVC phenomenon. Why do companies engage in CVC? What motivates them to continue "playing the game" and keep their active CVC investment status. The study examines CVC investment activity, and the importance of understanding the influential factors that make a firm decide to engage in CVC. The main question is: How do established firms' CVC programs adapt to changing internal conditions and external environments. Adaptation typically involves learning from exploratory endeavors, which enable companies to transform the ways they compete (Guth & Ginsberg, 1990). Our study extends the current stream of research on CVC. It aims to contribute to the literature by providing an extensive comparison of internal and external determinants leading to CVC investment activity. To our knowledge, this is the first study to examine the influence of internal and external determinants on CVC activity throughout specific expansion and contraction periods determined by structural breaks occurring between 1985 to 2008. Our econometric analysis indicates a strong and significant positive association between CVC activity and R&D, cash flow availability and environmental financial market conditions, as well as a significant negative association between sales growth and the decision to engage into CVC. The analysis of this study reveals that CVC investment is highly volatile, as demonstrated by dramatic fluctuations in CVC investment activity over the past decades. When analyzing the overall cyclical CVC period from 1985 to 2008 the results of our study suggest that CVC activity has a pattern influenced by financial factors such as the level of R&D, free cash flow, lack of sales growth, and external conditions of the economy, with the NASDAQ price index as the most significant variable influencing CVC during this period. II. Contribution of CVC and its Interaction with R&D to Value Creation The second essay takes into account the demands of corporate executives and shareholders regarding business performance and value creation justifications for investments in innovation. Billions of dollars are invested in CVC and R&D. However there is little evidence that CVC and its interaction with R&D create value. Firms operating in dynamic business sectors seek to innovate to create the value demanded by changing market conditions, consumer preferences, and competitive offerings. Consequently, firms operating in such business sectors put a premium on finding new, sustainable and competitive value propositions. CVC and R&D can help them in this challenge. Dushnitsky and Lenox (2006) presented evidence that CVC investment is associated with value creation. However, studies have shown that the most innovative firms do not necessarily benefit from innovation. For instance Oyon (2007) indicated that between 1995 and 2005 the most innovative automotive companies did not obtain adequate rewards for shareholders. The interaction between CVC and R&D has generated much debate in the CVC literature. Some researchers see them as substitutes suggesting that firms have to choose between CVC and R&D (Hellmann, 2002), while others expect them to be complementary (Chesbrough & Tucci, 2004). This study explores the interaction that CVC and R&D have on value creation. This essay examines the impact of CVC and R&D on value creation over sixteen years across six business sectors and different geographical regions. Our findings suggest that the effect of CVC and its interaction with R&D on value creation is positive and significant. In dynamic business sectors technologies rapidly relinquish obsolete, consequently firms operating in such business sectors need to continuously develop new sources of value creation (Eisenhardt & Martin, 2000; Qualls, Olshavsky, & Michaels, 1981). We conclude that in order to impact value creation, firms operating in business sectors such as Engineering & Business Services, and Information Communication & Technology ought to consider CVC as a vital element of their innovation strategy. Moreover, regarding the CVC and R&D interaction effect, our findings suggest that R&D and CVC are complementary to value creation hence firms in certain business sectors can be better off supporting both R&D and CVC simultaneously to increase the probability of generating value creation. III. MCS and Organizational Structures for Radical Innovation Incremental innovation is necessary for continuous improvement but it does not provide a sustainable permanent source of competitiveness (Cooper, 2003). On the other hand, radical innovation pursuing new technologies and new market frontiers can generate new platforms for growth providing firms with competitive advantages and high economic margin rents (Duchesneau et al., 1979; Markides & Geroski, 2005; O'Connor & DeMartino, 2006; Utterback, 1994). Interestingly, not all companies distinguish between incremental and radical innovation, and more importantly firms that manage innovation through a one-sizefits- all process can almost guarantee a sub-optimization of certain systems and resources (Davila et al., 2006). Moreover, we conducted research on the utilization of MCS along with radical innovation and flexible organizational structures as these have been associated with firm growth (Cooper, 2003; Davila & Foster, 2005, 2007; Markides & Geroski, 2005; O'Connor & DeMartino, 2006). Davila et al. (2009) identified research opportunities for innovation management and provided a list of pending issues: How do companies manage the process of radical and incremental innovation? What are the performance measures companies use to manage radical ideas and how do they select them? The fundamental objective of this paper is to address the following research question: What are the processes, MCS, and organizational structures for generating radical innovation? Moreover, in recent years, research on innovation management has been conducted mainly at either the firm level (Birkinshaw, Hamel, & Mol, 2008a) or at the project level examining appropriate management techniques associated with high levels of uncertainty (Burgelman & Sayles, 1988; Dougherty & Heller, 1994; Jelinek & Schoonhoven, 1993; Kanter, North, Bernstein, & Williamson, 1990; Leifer et al., 2000). Therefore, we embarked on a novel process-related research framework to observe the process stages, MCS, and organizational structures that can generate radical innovation. This article is based on a case study at Alcan Engineered Products, a division of a multinational company provider of lightweight material solutions. Our observations suggest that incremental and radical innovation should be managed through different processes, MCS and organizational structures that ought to be activated and adapted contingent to the type of innovation that is being pursued (i.e. incremental or radical innovation). More importantly, we conclude that radical can be generated in a systematic way through enablers such as processes, MCS, and organizational structures. This is in line with the findings of Jelinek and Schoonhoven (1993) and Davila et al. (2006; 2007) who show that innovative firms have institutionalized mechanisms, arguing that radical innovation cannot occur in an organic environment where flexibility and consensus are the main managerial mechanisms. They rather argue that radical innovation requires a clear organizational structure and formal MCS.
Resumo:
The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.
Resumo:
Intraspecific genetic variation for morphological traits is observed in many organisms. In Arabidopsis thaliana, alleles responsible for intraspecific morphological variation are increasingly being identified. However, the fitness consequences remain unclear in most cases. Here, the fitness effects of alleles of the BRX gene are investigated. A brx loss-of-function allele, which was found in a natural accession, results in a highly branched but poorly elongated root system. Comparison between the control accession Sav-0 and an introgression of brx into this background (brxS) indicated that, surprisingly, brx loss of function did not negatively affect fitness in pure stands. However, in mixed, well-watered stands brxS performance and reproductive output decreased significantly, as the proportion of Sav-0 neighbors increased. Additional comparisons between brxS and a brxS line that was complemented by a BRX transgene confirmed a direct effect of the loss-of-function allele on plant performance, as indicated by restored competitive ability of the transgenic genotype. Further, because plant height was very similar across genotypes and because the experimental setup largely excluded shading effects, the impaired competitiveness of the brx loss-of-function genotype likely reflects below-ground competition. In summary, these data reveal conditional fitness effects of a single gene polymorphism in response to intraspecific competition in Arabidopsis.
Resumo:
The dynamics of the control of Aedes (Stegomyia) aegypti Linnaeus, (Diptera, Culicidae) by Bacillus thuringiensis var israelensis has been related with the temperature, density and concentration of the insecticide. A mathematical model for biological control of Aedes aegypti with Bacillus thuringiensis var israelensis (Bti) was constructed by using data from the literature regarding the biology of the vector. The life cycle was described by differential equations. Lethal concentrations (LC50 and LC95) of Bti were determined in the laboratory under different experimental conditions. Temperature, colony, larvae density and bioinsecticide concentration presented marked differences in the analysis of the whole set of variables; although when analyzed individually, only the temperature and concentration showed changes. The simulations indicated an inverse relationship between temperature and mosquito population, nonetheless, faster growth of populations is reached at higher temperatures. As conclusion, the model suggests the use of integrated control strategies for immature and adult mosquitoes in order to achieve a reduction of Aedes aegypti.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.
Resumo:
Macrophages play a critical role in intestinal wound repair. However, the mechanisms of macrophage-assisted wound repair remain poorly understood. We aimed to characterize more clearly the repair activities of murine and human macrophages. Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of healthy donors (HD) or Crohn's disease (CD) patients or isolated from the intestinal mucosa of HD. In-vitro models were used to study the repair activities of macrophages. We found that murine and human macrophages were both able to promote epithelial repair in vitro. This function was mainly cell contact-independent and relied upon the production of soluble factors such as the hepatocyte growth factor (HGF). Indeed, HGF-silenced macrophages were less capable of promoting epithelial repair than control macrophages. Remarkably, macrophages from CD patients produced less HGF than their HD counterparts (HGF level: 84âeuro0/00±âeuro0/0027âeuro0/00pg/mg of protein and 45âeuro0/00±âeuro0/0034âeuro0/00pg/mg of protein, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·009) and were deficient in promoting epithelial repair (repairing activity: 90·1âeuro0/00±âeuro0/004·6 and 75·8âeuro0/00±âeuro0/008·3, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·0005). In conclusion, we provide evidence that macrophages act on wounded epithelial cells to promote epithelial repair through the secretion of HGF. The deficiency of CD macrophages to secrete HGF and to promote epithelial repair might contribute to the impaired intestinal mucosal healing in CD patients.
Resumo:
Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.
Resumo:
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Resumo:
L’aplicació de tècniques respiromètriques és de recent innovació dins l’estudi dels tractaments d’aigües residuals. Aquest conjunt de tècniques ens permeten analitzar dos processos importants dins una planta de tractament biològic: el creixement de la biomassa i el consum del substrat. Això fa que siguin una eina amb gran potencial en l’avaluació dels sistemes de tractament biològic d’aigües residuals. L’objectiu principal d’aquest treball es la realització d’una aplicació capaç de controlar el funcionament de 6 respiròmetres, gestionant el procés del mostreig de les respirometries i l’anàlisi de les dades obtingudes, per obtenir el substrat ràpidament biodegradable (Ss) per a mostres d’aigua residual, i la taxa màxima de creixement específic per a mostres de compost. L’aplicació s’ha desenvolupat sobre l’entorn Microsoft Access, on s’integren la base de dades amb les mostres i els resultats de les respirometries, i els formularis de control que ens permeten gestionar i controlar els processos de mostreig i anàlisi. L’aplicació es comunica amb els sensors i actuadors dels respiròmetres a través del control ActiveX, ADS-OCX, subministrat per TwinCAT, que ens permet capturar les lectures dels sensors i controlar el funcionament dels actuadors. Aquests elements estan connectats a mòduls descentralitzats d’entrades i sortides, comunicats mitjançant el bus Ethernet amb el PC-Industrial, on s’executa l’aplicació. Un cop finalitzada l’aplicació, aquesta controla correctament el mostreig de les respirometries, registrant les lectures de les sondes a la base de dades i controlant l’activació de les vàlvules del respiròmetre. Partint de les mostres obtingudes, o de respirometries externes, importades des de Microsoft Excel, s’ha comprovat el correcte funcionament en el càlcul del substrat ràpidament biodegradable (Ss) i la taxa màxima de creixement específic. Amb l’aplicació desenvolupada, s’ha comprovat el funcionament i les possibilitats que ens ofereix TwinCAT alhora de controlar mòduls d’entrades i sortides, així com la seva comunicació amb aplicacions com Microsoft Access. Això pot afavorir a la utilització d’aquest tipus de tecnologia, per aplicacions futures.
Resumo:
Background: Growth Arrest-Specific Gene 6 product (Gas6) is, like anticoagulant protein C, a vitamin K-dependent protein. Our aim was to determine whether Gas6 plays a role in sepsis. Materials and methods: We submitted mice lacking Gas6 (Gas6)/)) or one of its receptors (Axl)/), Tyro3)/) or Mertk)/)) to LPS-induced endotoxemia and peritonitis (cecal ligation and puncture (CLP) and inoculation of E. coli). In addition, we measured Gas6 or its soluble receptors in plasma of eight volunteers that received LPS, 13 healthy subjects, 28 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Results: Gas6 and its soluble receptor sAxl raised in mice models and TNF-a was more elevated in Gas6)/) mice than in wild-type (WT). Protein array showed that before and after LPS injection, titers of 62 cytokines were more elevated in plasma of Gas6)/) than WT mice. Endotoxemia-induced mortality was higher in Gas6)/), Axl)/), Tyro3)/) and Mertk)/) compared to WT mice and mortality subsequent to CLP was amplified in Gas6)/) mice. LPS-stimulated Gas6)/) macrophages produced more cytokines than WT macrophages. This production was dampened by recombinant Gas6. Phosphorylation of Akt in Gas6)/) macrophages was reduced, but p38 phosphorylation and NF-jB translocation were increased. In human, Gas6 raised in plasma after LPS (2 ng/kg). Gas6 and sAxl were higher in patients with severe sepsis than in healthy subjects or control patients, and there was a non-significant trend for higher Gas6 in the survival group. Conclusions: Our data point to Gas6 as a major modulator of innate immunity and provide thereby novel insights into the mechanism of sepsis. Thus Gas6 and its receptors might constitute potential therapeutic targets for the development of new immunomodulating drugs.
Resumo:
Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.