993 resultados para Fractional-order
Resumo:
This paper discusses several complex systems in the perspective of fractional dynamics. For prototype systems are considered the cases of deoxyribonucleic acid decoding, financial evolution, earthquakes events, global warming trend, and musical rhythms. The application of the Fourier transform and of the power law trendlines leads to an assertive representation of the dynamics and to a simple comparison of their characteristics. Moreover, the gallery of different systems, both natural and man made, demonstrates the richness of phenomena that can be described and studied with the tools of fractional calculus.
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algorithm takes advantage of present day computational resources and processes directly the characteristic equation, avoiding the limitations revealed by standard methods. The results demonstrate the good performance for different types of expressions.
Resumo:
This paper studies the dynamics of a system composed of a collection of particles that exhibit collisions between them. Several entropy measures and different impact conditions of the particles are tested. The results reveal a Power Law evolution both of the system energy and the entropy measures, typical in systems having fractional dynamics.
Resumo:
In this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
The advantageous use of fractional calculus (FC) in the modeling and control of many dynamical systems has been recognized. In this paper, we study the control of a heat diffusion system based on the application of the FC concepts. Several algorithms are investigated and compared, when integrated within a Smith predictor control structure. Simulations are presented assessing the performance of the proposed fractional algorithms.
Resumo:
This survey intends to report some of the major documents and events in the area of fractional calculus that took place since 1974 up to the present date.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
The concepts involved with fractional calculus (FC) theory are applied in almost all areas of science and engineering. Its ability to yield superior modeling and control in many dynamical systems is well recognized. In this article, we will introduce the fundamental aspects associated with the application of FC to the control of dynamic systems.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. It has been recognized the advantageous use of this mathematical tool in the modelling and control of many dynamical systems. Having these ideas in mind, this paper discusses a FC perspective in the study of the dynamics and control of several systems. The paper investigates the use of FC in the fields of controller tuning, legged robots, electrical systems and digital circuit synthesis.
Resumo:
This article presents a dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform. The new dynamic description integrates the concepts of fractional calculus leading to a more natural treatment of the continuum of the Transfer Function parameters intrinsic in this system. The results using system theory tools point out that it is possible to study traffic systems, taking advantage of the knowledge gathered with automatic control algorithms. Dynamics, Games and Science I Dynamics, Games and Science I Look Inside Other actions Export citation About this Book Reprints and Permissions Add to Papers Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn
Resumo:
This paper studies the application of fractional algorithms in the control of a quad-rotor rotorcraft. The development of a flight simulator provide the evaluation of the controller algorithm. Several basic maneuvers are investigated, namely the elevation and the position control.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.