932 resultados para Flow rate variation coefficient
Resumo:
In oil and gas pipeline operations, the gas, oil, and water phases simultaneously move through pipe systems. The mixture cools as it flows through subsea pipelines, and forms a hydrate formation region, where the hydrate crystals start to grow and may eventually block the pipeline. The potential of pipe blockage due to hydrate formation is one of the most significant flow-assurance problems in deep-water subsea operations. Due to the catastrophic safety and economic implications of hydrate blockage, it is important to accurately predict the simultaneous flow of gas, water, and hydrate particles in flowlines. Currently, there are few or no studies that account for the simultaneous effects of hydrate growth and heat transfer on flow characteristics within pipelines. This thesis presents new and more accurate predictive models of multiphase flows in undersea pipelines to describe the simultaneous flow of gas, water, and hydrate particles through a pipeline. A growth rate model for the hydrate phase is presented and then used in the development of a new three-phase model. The conservation equations of mass, momentum, and energy are formulated to describe the physical phenomena of momentum and heat transfer between the fluid and the wall. The governing equations are solved based on an analytical-numerical approach using a Newton-Raphson method for the nonlinear equations. An algorithm was developed in Matlab software to solve the equations from the inlet to the outlet of the pipeline. The developed models are validated against a single-phase model with mixture properties, and the results of comparative studies show close agreement. The new model predicts the volume fraction and velocity of each phase, as well as the mixture pressure and temperature profiles along the length of the pipeline. The results from the hydrate growth model reveal the growth rate and location where the initial hydrates start to form. Finally, to assess the impact of certain parameters on the flow characteristics, parametric studies have been conducted. The results show the effect of a variation in the pipe diameter, mass flow rate, inlet pressure, and inlet temperature on the flow characteristics and hydrate growth rates.
Resumo:
This work presents an experimental investigation of thermal hydraulic performance of the nanofluid composed by graphene nanoparticles dispersed in a mixture of water and ethylene glycol at a ratio of 70:30% by volume. The tests were carried out under forced convection inside a circular tube with uniform heat flux on the wall for the laminar-turbulent transition regime. The mass flow rate ranged from 40 to 70 g/s corresponding to Reynolds numbers between 3000 and 7500. The heat flux was maintained constant at values of 11, 16 and 21 kW/m², as well as the inlet temperature of 15, 20 and 25°C. Three samples were produced with the nanofluid volumetric concentration of 0.05%, 0.10% and 0.15%. Thermophysical properties were experimentaly measured for all samples that were critically compared and discussed with theoretical models most commonly used in the literature. Initially, experiments with distilled water confirmed the validity of the experimental equipment for the thermo-hydraulic tests. Therefore, nanofluid samples that showed the highest thermal conductivity, corresponding to the volumetric concentrations of 0.15% and 0.10%, were subjected to the tests. The thermal-hydraulic performance for both samples was unsatisfactory. The heat transfer coefficients for convection of nanofluids reduced 21% in average, for the sample with = 0.15% and 26% and for =0.10%. The pressure drop of the samples was higher than the base fluid. Finally, the pressure drop and heat transfer coefficient by convection of both samples were also compared to theoretical models. The models used for pressure drop showed an excellent agreement with experimental results, which is remarkable considering the transitional flow.
Resumo:
Dans les dernières années, les perturbateurs endocriniens ont été observés dans les rivières qui reçoivent des entrées importantes d’eaux usées. Parmi les perturbateurs endocriniens, les hormones stéroïdiennes naturelles et synthétiques sont des composés dont le potentiel d'imiter ou d'interférer avec les fonctions hormonales normales (développement, croissance et reproduction), est reconnu même au niveau ultra-traces (ng L-1). Bien que les hormones conjuguées soient moins actives que les hormones libres, elles peuvent être clivées et redevenir libres une fois exposées aux processus microbiens avant ou pendant le traitement des eaux usées. En raison de la nécessité d'identifier et de quantifier ces composés dans l'eau, une nouvelle méthode, entièrement automatisée, a été développée pour la détermination simultanée des deux formes de plusieurs hormones stéroïdiennes (conjuguées et libres) dans les matrices d'eau et dans l’urine des femmes. La méthode est basée sur l'extraction en phase solide couplée en ligne à la chromatographie liquide et la spectrométrie de masse en tandem (SPE-LC-MS/MS). Plusieurs paramètres ont été évalués dans le but d'optimiser l'efficacité de la méthode, tels que le type et le débit de la phase mobile, des différentes colonnes de SPE et de chromatographie, ainsi que différentes sources et modes d'ionisation des échantillons pour la MS. La méthode démontre une bonne linéarité (R2 > 0.993), ainsi qu'une précision avec un coefficient de variance inférieure à 10%. Les limites de quantification varient d’un minimum de 3 à 15 ng L-1 pour un volume d'injection entre 1 mL et 5 mL et le recouvrement des composés varie de 72 % à 117 %.
Resumo:
Recrystallization processes in marine sediments can alter the extent to which biogenic calcite composition serves as a proxy of oceanic chemical and isotopic history. Models of calcite recrystallization developed to date have resulted in significant insights into these processes, but are not completely adequate to describe the conditions of recrystallization. Marine sediments frequently have concentration gradients in interstitial dissolved calcium, magnesium, and strontium which have probably evolved during sediment accumulation. Realistic, albeit simplified, models of the temporal evolution of interstitial water profiles of Ca, Mg, and Sr were used with several patterns of recrystallization rate variation to predict the composition of recrystallized inorganic calcite. Comparison of predictions with measured Mg/Ca and Sr/Ca ratios in severely altered calcite samples from several Deep Sea Drilling Project sites demonstrates that models incorporating temporal variation in interstitial water composition more successfully predict observed calcite compositions than do models which rely solely on present-day interstitial water chemistry. Temporal changes in interstitial composition are particularly important in interpreting Mg/Ca ratios in conjunction with Sr/Ca ratios. Estimates of Mg distribution coefficients from previous observations in marine sediments, much lower than those in laboratory studies of inorganic calcite, are confirmed by these results. Evaluation of the effects of diagenetic alteration of biogenic calcium carbonate sediment must be a site-specific process, taking into account accumulation history, present interstitial chemistry and its variation in the past, and sample depths and ages.
Resumo:
Injection stretch blow moulding is a well-established method of forming thin-walled containers and has been extensively researched for numerous years. This paper is concerned with validating the finite element analysis of the free-stretch-blow process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature and air flow rate, while capturing cavity pressure, stretch-rod reaction force and preform surface strain. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate viscoelastic material subroutine. Results reveal that the simulation is able to give good quantitative correlation for conditions where the deformation was predominantly equal biaxial whilst qualitative correlation was achievable when the mode of deformation was predominantly sequential biaxial. Overall the simulation was able to pick up the general trends of how the pressure, reaction force, strain rate and strain vary with the variation in preform temperature and air flow rate. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and allowing for reduction in future development costs.
Resumo:
Understanding the dynamics of blood cells is a crucial element to discover biological mechanisms, to develop new efficient drugs, design sophisticated microfluidic devices, for diagnostics. In this work, we focus on the dynamics of red blood cells in microvascular flow. Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. We investigate the development of blood flow and its resistance starting from a dispersed configuration of red blood cells in simulations for different hematocrits, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow, which allows an estimation of the length of a vessel required for full flow development, $l_c \approx 25D$, with vessel diameter $D$. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length $l_c$. The presence of aggregation interactions between red blood cells lead in general to a reduction of blood flow resistance. The development of the cell-free layer thickness looks similar for both cases with and without aggregation interactions. Although, attractive interactions result in a larger cell-free layer plateau values. However, because the aggregation forces are short-ranged at high enough shear rates ($\bar{\dot{\gamma}} \gtrsim 50~\text{s}^{-1}$) aggregation of red blood cells does not bring a significant change to the blood flow properties. Also, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness with respect to flow rate assuming steady-state flow. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells. Finally, we investigate segregation phenomena in blood as a two-component suspension under Poiseuille flow, consisting of red blood cells and target cells. The spatial distribution of particles in blood flow is very important. For example, in case of nanoparticle drug delivery, the particles need to come closer to microvessel walls, in order to adhere and bring the drug to a target position within the microvasculature. Here we consider that segregation can be described as a competition between shear-induced diffusion and the lift force that pushes every soft particle in a flow away from the wall. In order to investigate the segregation, on one hand, we have 2D DPD simulations of red blood cells and target cell of different sizes, on the other hand the Fokker-Planck equation for steady state. For the equation we measure force profile, particle distribution and diffusion constant across the channel. We compare simulation results with those from the Fokker-Planck equation and find a very good correspondence between the two approaches. Moreover, we investigate the diffusion behavior of target particles for different hematocrit values and shear rates. Our simulation results indicate that diffusion constant increases with increasing hematocrit and depends linearly on shear rate. The third part of the study describes development of a simulation model of complex vascular geometries. The development of the model is important to reproduce vascular systems of small pieces of tissues which might be gotten from MRI or microscope images. The simulation model of the complex vascular systems might be divided into three parts: modeling the geometry, developing in- and outflow boundary conditions, and simulation domain decomposition for an efficient computation. We have found that for the in- and outflow boundary conditions it is better to use the SDPD fluid than DPD one because of the density fluctuations along the channel of the latter. During the flow in a straight channel, it is difficult to control the density of the DPD fluid. However, the SDPD fluid has not that shortcoming even in more complex channels with many branches and in- and outflows because the force acting on particles is calculated also depending on the local density of the fluid.
Resumo:
In the last years the need to develop more environmentally friendly and efficient cars as led to the development of several technologies to improve the performance of internal combustion engines, a large part of the innovations are focused in the auxiliary systems of the engine, including, the oil pump, this is an element of great importance in the dynamics of the engine as well a considerable energy consumer. Most solutions for oil pumps to this day are fixed displacement, for medium and high speeds, the pump flow rate is higher than the needs of the engine, this excess flow leads to the need for recirculation of the fluid which represents a waste of energy. Recently, technological advances in this area have led to the creation of variable displacement oil pumps, these have become a 'must have' due to the numerous advantages they bring, although the working principle of vane or piston pumps is relatively well known, the application of this technology for the automotive industry is new and brings new challenges. The focus of this dissertation is to develop a new concept of variable displacement system for automotive oil pumps. The main objective is to obtain a concept that is totally adaptable to existing solutions on the market (engines), both dimensionally as in performance specifications, having at the same time an innovative mechanical system for obtaining variable displacement. The developed design is a vane pump with variable displacement going in line with existing commercial solutions, however, the variation of the eccentricity commonly used to provide an variable displacement delivery is not used, the variable displacement is achieved without varying the eccentricity of the system but with a variation of the length of the pumping chamber. The principle of operation of the pump is different to existing solutions while maintaining the ability to integrate standard parts such as control valves and mechanical safety valves, the pump is compatible with commercial solutions in terms of interfaces for connection between engine systems and pump. A concept prototype of the product was obtained in order to better evaluate the validity of the concept. The developed concept represents an innovation in oil pumps design, being unique in its mechanical system for variable displacement delivery.
Resumo:
To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.
Resumo:
A fixação biológica de dióxido de carbono por microalgas é considerada a melhor forma de fixar CO2. Dentre os microrganismos utilizados destaca-se Spirulina platensis devido às suas altas taxas de fixação de CO2 e variedade de aplicações da biomassa gerada. A aplicação de modelos e simulações pode auxiliar na previsão de custos e na escolha das condições ideais de cultivo. Este trabalho teve como objetivo etsabelecer um modelo cinético no qual a iluminância é o fator limitante para o crescimento da microalga Spirulina platensis. A fim de validar o modelo proposto foi utilizada a microalga S. platensis, cultivada em meio Zarrouk modificado (NaHCO3 1,0 g.L-1 ), em biorreator aberto tipo raceway de 200L, mantido a 30°C, sob iluminação natural. A concentração celular variou de 0,19 a 0,34 g.L-1 e a velocidade específica de crescimento celular obtida a partir da regressão exponencial das curvas de crescimento de cada período iluminado variou de 0,55 a 0,59 d-1 . O modelo proposto gerou dados estimados satisfatórios (r2 =0,97). De acordo com os dados obtidos 16,2% da biomassa é consumida durante o período não iluminado.
Resumo:
Dans les dernières années, les perturbateurs endocriniens ont été observés dans les rivières qui reçoivent des entrées importantes d’eaux usées. Parmi les perturbateurs endocriniens, les hormones stéroïdiennes naturelles et synthétiques sont des composés dont le potentiel d'imiter ou d'interférer avec les fonctions hormonales normales (développement, croissance et reproduction), est reconnu même au niveau ultra-traces (ng L-1). Bien que les hormones conjuguées soient moins actives que les hormones libres, elles peuvent être clivées et redevenir libres une fois exposées aux processus microbiens avant ou pendant le traitement des eaux usées. En raison de la nécessité d'identifier et de quantifier ces composés dans l'eau, une nouvelle méthode, entièrement automatisée, a été développée pour la détermination simultanée des deux formes de plusieurs hormones stéroïdiennes (conjuguées et libres) dans les matrices d'eau et dans l’urine des femmes. La méthode est basée sur l'extraction en phase solide couplée en ligne à la chromatographie liquide et la spectrométrie de masse en tandem (SPE-LC-MS/MS). Plusieurs paramètres ont été évalués dans le but d'optimiser l'efficacité de la méthode, tels que le type et le débit de la phase mobile, des différentes colonnes de SPE et de chromatographie, ainsi que différentes sources et modes d'ionisation des échantillons pour la MS. La méthode démontre une bonne linéarité (R2 > 0.993), ainsi qu'une précision avec un coefficient de variance inférieure à 10%. Les limites de quantification varient d’un minimum de 3 à 15 ng L-1 pour un volume d'injection entre 1 mL et 5 mL et le recouvrement des composés varie de 72 % à 117 %.
Resumo:
Background: The nitration of tyrosine residues in proteins is associated with nitrosative stress, resulting in the formation of 3-nitrotyrosine (3-NT). 3-NT levels in biological samples have been associated with numerous physiological and pathological conditions. For this reason, several attempts have been made in order to develop methods that accurately quantify 3-NT in biological samples. Regarding chromatographic methods, they seem to be very accurate, showing very good sensibility and specificity. However, accurate quantification of this molecule, which is present at very low concentrations both at physiological and pathological states, is always a complex task and a target of intense research. Objectives: We aimed to develop a simple, rapid, low-cost and sensitive 3-NT quantification method for use in medical laboratories as an additional tool for diagnosis and/or treatment monitoring of a wide range of pathologies. We also aimed to evaluate the performance of the HPLC-based method developed here in a wide range of biological matrices. Material and methods: All experiments were performed on a Hitachi LaChrom Elite® HPLC system and separation was carried out using a Lichrocart® 250-4 Lichrospher 100 RP-18 (5μm) column. The method was further validated according to ICH guidelines. The biological matrices tested were serum, whole blood, urine, B16 F-10 melanoma cell line, growth medium conditioned with the same cell line, bacterial and yeast suspensions. Results: From all the protocols tested, the best results were obtained using 0.5% CH3COOH:MeOH:H2O (15:15:70) as the mobile phase, with detection at wavelengths 215, 276 and 356 nm, at 25ºC, and using a flow rate of 1 mL/min. By using this protocol, it was possible to obtain a linear calibration curve (correlation coefficient = 1), limits of detection and quantification in the order of ng/mL, and a short analysis time (<15 minutes per sample). Additionally, the developed protocol allowed the successful detection and quantification of 3-NT in all biological matrices tested, with detection at 356 nm. Conclusion: The method described in this study, which was successfully developed and validated for 3-NT quantification, is simple, cheap and fast, rendering it suitable for analysis in a wide range of biological matrices.
Resumo:
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.
Resumo:
Purpose: To develop and validate a simple, efficient and reliable Liquid chromatographic-mass spectrometric (LC-MS/MS) method for the quantitative determination of two dermatological drugs, Lamisil® (terbinafine) and Proscar® (finasteride), in split tablet dosage form. Methods: Thirty tablets each of the 2 studied medications were randomly selected. Tablets were weighed and divided into 3 groups. Ten tablets of each drug were kept intact, another group of 10 tablets were manually split into halves using a tablet cutter and weighed with an analytical balance; a third group were split into quarters and weighed. All intact and split tablets were individually dissolved in a water: methanol mixture (4:1), sonicated, filtered and further diluted with mobile phase. Optimal chromatographic separation and mass spectrometric detection were achieved using an Agilent 1200 HPLC system coupled with an Agilent 6410 triple quadrupole mass spectrometer. Analytes were eluted through an Agilent eclipse plus C8 analytical column (150 mm × 4.6 mm, 5 μm) with a mobile phase composed of solvent A (water) containing 0.1% formic acid and 5mM ammonium formate pH 7.5, and solvent B (acetonitrile mixed with water in a ratio A:B 55:45) at a flow rate of 0.8 mL min-1 with a total run time of 12 min. Mass spectrometric detection was carried out using positive ionization mode with analyte quantitation monitored by multiple reaction monitoring (MRM) mode. Results: The proposed analytical method proved to be specific, robust and adequately sensitive. The results showed a good linear fit over the concentration range of 20 - 100 ng mL-1 for both analytes, with a correlation coefficient (r2) ≥ 0.999 and 0.998 for finasteride and terbinafine, respectively. Following tablet splitting, the drug content of the split tablets fell outside of the proxy USP specification for at least 14 halves (70 %) and 34 quarters (85 %) of FIN, as well as 16 halves (80 %) and 37 quarters (92.5 %) of TBN. Mean weight loss, after splitting, was 0.58 and 2.22 % for FIN half- and quarter tablets, respectively, and 3.96 and 4.09 % for TBN half- and quarter tablets,respectively. Conclusion: The proposed LC-MS/MS method has successfully been used to provide precise drug content uniformity of split tablets of FIN and TBN. Unequal distribution of the drug on the split tablets is indicated by the high standard deviation beyond the accepted value. Hence, it is recommended not to split non-scored tablets especially, for those medications with significant toxicity
Resumo:
Le nettoyage des systèmes de Chauffage, Ventilation et Climatisation de l’Air est important pour assurer une bonne qualité d’air intérieur. Le déclenchement de leur nettoyage est basé sur une inspection visuelle qui ne tient pas compte du contenu en moisissures, lesquelles ont des effets sur le système respiratoire. Cette recherche vise à proposer une méthode d’évaluation du contenu en moisissures afin d’aider les gestionnaires d’immeuble. Cinq générations de poussières ont été effectuées pour simuler un conduit de ventilation. Une cassette modifiée 37 mm et un filtre CPV pré-pesés ont utilisés pour collecter les poussières déposées avec une pompe calibrée à 15L/min. Les pourcentages de collecte des cassettes et des filtres ont été calculés pour 54 échantillons. Dix générations supplémentaires de poussières ont été effectuées concomitamment avec la génération de spores. Soixante échantillons ont été analysés selon quatre méthodes : culture, comptage direct des spores par microscopie (CDSM), dosage de β-N-acétylhexosaminidase (NAHA), 18S-q-PCR. La limite de détection (LD), la réplicabilité, la répétabilité, le nombre de spores et le coefficient de corrélation (r) ont été déterminés. Les récupérations de poussières étaient supérieures à 84%. Selon la méthode analytique, les concentrations médianes de spores/100 cm² allaient de 10 000 à 815 000. Les LD variaient dépendamment de la méthode de 120 à 218 000 spores/100 cm² et r de -0,08 à 0,83. La réplicabilité et la répétabilité étaient de 1% et 1% pour PCR; 5% et 10% pour CDSM; 6% et 15% pour NAHA; 12% et 11% pour culture. La méthode de collecte a démontré une excellente efficacité de récupération. La PCR est la méthode analytique recommandée pour l’évaluation fongique des systèmes de ventilation. Une validation terrain est en cours.