998 resultados para Field inspection
Resumo:
This paper presents the design and the prototype implementation of a three-phase power inverter developed to drive a motor-in-wheel. The control system is implemented in a FPGA (Field Programmable Gate Array) device. The paper describes the Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique that were implemented. The control platform uses a Spartan-3E FPGA board, programmed with Verilog language. Simulation and experimental results are presented to validate the developed system operation under different load conditions. Finally are presented conclusions based on the experimental results.
Resumo:
Electric Vehicles (EVs) are increasingly used nowadays, and different powertrain solutions can be adopted. This paper describes the control system of an axial flux Permanent Magnet Synchronous Motor (PMSM) for EVs powertrain. It is described the implemented Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique. Also, the mathematical model of the PMSM is presented. Both, simulation and experimental, results with different types of mechanical load are presented. The experimental results were obtained using a laboratory test bench. The obtained results are discussed.
Resumo:
One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.
Resumo:
The TRMM-LBA field campaign was held during the austral summer of 1999 in southwestern Amazonia. Among the major objectives, was the identification and description of the diurnal variability of rainfall in the region, associated with the different rain producing weather systems that occurred during the January-February season. By using a network of 40 digital rain gauges implemented in the state of Rondônia, and together with observations and analyses of circulation and convection, it was possible to identify details of the diurnal cycle of rainfall and the associated rainfall mechanisms. Rainfall episodes were characterized by regimes of "low-level easterly" and "westerly" winds in the context of the large-scale circulation. The westerly regime is related to an enhanced South Atlantic Convergence Zone (SACZ) and an intense and/or wide Low Level Jet (LLJ) east of the Andes, which can extend eastward towards Rondônia, even though some westerly regime episodes also show a LLJ that remains close to the foothill of the Andes. The easterly regime is related to easterly propagating systems (e.g. squall-lines) with possible weakened or less frequent LLJs and a suppressed SACZ. Diurnal variability of rainfall during westerly surface wind regime shows a characteristic maximum at late afternoon followed by a relatively weaker second maximum at early evening (2100 Local Standard Time LST). The easterly regime composite shows an early morning maximum followed by an even stronger maximum in the afternoon.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
We summarise recent results about the evolution of linear density perturbations in scalar field cosmologies with an exponential potential. We use covariant and gauge invariant perturbation variables and a dynamical systems' approach. We establish under what conditions do the perturbations decay to the future in agreement with the cosmic no-hair conjecture.
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cellâ material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.
Resumo:
v.13:pt.2:no.1(1918)
Resumo:
v.13:pt.2:no.2(1919)
Resumo:
v.4(1935)
Resumo:
v.5(1940)
Resumo:
The overall purpose of this study was to develop a thorough inspection regime for onsite wastewater treatment systems, which is practical and could be implemented on all site conditions across the country. With approximately 450,000 onsite wastewater treatment systems in Ireland a risk based methodology is required for site selection. This type of approach will identify the areas with the highest potential risk to human health and the environment and these sites should be inspected first. In order to gain the required knowledge to develop an inspection regime in-depth and extensive research was earned out. The following areas of pertinent interest were examined and reviewed, history of domestic wastewater treatment, relevant wastewater legislation and guidance documents and potential detrimental impacts. Analysis of a questionnaire from a prior study, which assessed the resources available and the types of inspections currently undertaken by Local authorities was carried out. In addition to the analysis of the questionnaire results, interviews were carried out with several experts involved in the area of domestic wastewater treatment. The interview focussed on twelve key questions which were directed towards the expert’s opinions on the vital aspects of developing an inspection regime. The background research, combined with the questionnaire analysis and information from the interviews provided a solid foundation for the development of an inspection regime. Chapter 8 outlines the inspection regime which has been developed for this study. The inspection regime includes a desktop study, consultation with the homeowners, visual site inspection, non-invasive site tests, and inspection of the treatment systems. The general opinion from the interviews carried out, was that a standardised approach for the inspections was necessary. For this reason an inspection form was produced which provides a standard systematic approach for inspectors to follow. This form is displayed in Appendix 3. The development of a risk based methodology for site selection was discussed and a procedure similar in approach to the Geological Survey of Irelands Groundwater Protection Schemes was proposed. The EPA is currently developing a risk based methodology, but it is not available to the general public yet. However, the EPA provided a copy of a paper outlining the key aspects of their methodology. The methodology will use risk maps which take account of the following parameters: housing density, areas with inadequate soil conditions, risk of water pollution through surface and subsurface pathways. Sites identified with having the highest potential risk to human health and the environment shall be inspected first. Based on the research carried out a number of recommendations were made which are outlined in Chapter 10. The principle conclusion was that, if these systems fail to operate satisfactorily, home owners need to understand that these systems dispose of the effluent to the 'ground' and the effluent becomes part of the hydrological cycle; therefore, they are a potential hazard to the environment and human health. It is the owners, their families and their neighbours who will be at most immediate risk.