849 resultados para Exclusion process, Multi-species, Multi-scale modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

My research PhD work is focused on the Electrochemically Generated Luminescence (ECL) investigation of several different homogeneous and heterogeneous systems. ECL is a redox induced emission, a process whereby species, generated at electrodes, undergo a high-energy electron transfer reaction to form excited states that emit light. Since its first application, the ECL technique has become a very powerful analytical tool and has widely been used in biosensor transduction. ECL presents an intrinsically low noise and high sensitivity; moreover, the electrochemical generation of the excited state prevents scattering of the light source: for all these characteristics, it is an elective technique for ultrasensitive immunoassay detection. The majority of ECL systems involve species in solution where the emission occurs in the diffusion layer near to the electrode surface. However, over the past few years, an intense research has been focused on the ECL generated from species constrained on the electrode surface. The aim of my work is to study the behavior of ECL-generating molecular systems upon the progressive increase of their spatial constraints, that is, passing from isolated species in solution, to fluorophores embedded within a polymeric film and, finally, to patterned surfaces bearing “one-dimensional” emitting spots. In order to describe these trends, I use different “dimensions” to indicate the different classes of compounds. My thesis was mostly developed in the electrochemistry group of Bologna with the supervision of Prof Francesco Paolucci and Dr Massimo Marcaccio. With their help and also thanks to their long experience in the molecular and supramolecular ECL fields and in the surface investigations using scanning probe microscopy techniques, I was able to obtain the results herein described. Moreover, during my research work, I have established a new collaboration with the group of Nanobiotechnology of Prof. Robert Forster (Dublin City University) where I spent a research period. Prof. Forster has a broad experience in the biomedical field, especially he focuses his research on film surfaces biosensor based on the ECL transduction. This thesis can be divided into three sections described as follows: (i) in the fist section, homogeneous molecular and supramolecular ECL-active systems, either organic or inorganic species (i.e., corannulene, dendrimers and iridium metal complex), are described. Driving force for this kind of studies includes the search for new luminophores that display on one hand higher ECL efficiencies and on the other simple mechanisms for modulating intensity and energy of their emission in view of their effective use in bioconjugation applications. (ii) in the second section, the investigation of some heterogeneous ECL systems is reported. Redox polymers comprising inorganic luminophores were described. In such a context, a new conducting platform, based on carbon nanotubes, was developed aimed to accomplish both the binding of a biological molecule and its electronic wiring to the electrode. This is an essential step for the ECL application in the field of biosensors. (iii) in the third section, different patterns were produced on the electrode surface using a Scanning Electrochemical Microscopy. I developed a new methods for locally functionalizing an inert surface and reacting this surface with a luminescent probe. In this way, I successfully obtained a locally ECL active platform for multi-array application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrust fault-related folds in carbonate rocks are characterized by deformation accommodated by different structures, such as joints, faults, pressure solution seams, and deformation bands. Defining the development of fracture systems related to the folding process is significant both for theoretical and practical purposes. Fracture systems are useful constrains in order to understand the kinematical evolution of the fold. Furthermore, understanding the relationships between folding and fracturing provides a noteworthy contribution for reconstructing the geodynamic and the structural evolution of the studied area. Moreover, as fold-related fractures influence fluid flow through rocks, fracture systems are relevant for energy production (geothermal studies, methane and CO2 , storage and hydrocarbon exploration), environmental and social issues (pollutant distribution, aquifer characterization). The PhD project shows results of a study carried out in a multilayer carbonate anticline characterized by different mechanical properties. The aim of this study is to understand the factors which influence the fracture formation and to define their temporal sequence during the folding process. The studied are is located in the Cingoli anticline (Northern Apennines), which is characterized by a pelagic multilayer characterized by sequences with different mechanical stratigraphies. A multi-scale analysis has been made in several outcrops located in different structural positions. This project shows that the conceptual sketches proposed in literature and the strain distribution models outline well the geometrical orientation of most of the set of fractures observed in the Cingoli anticline. On the other hand, the present work suggests the relevance of the mechanical stratigraphy in particular controlling the type of fractures formed (e.g. pressure solution seams, joints or shear fractures) and their subsequent evolution. Through a multi-scale analysis, and on the basis of the temporal relationship between fracture sets and their orientation respect layering, I also suggest a conceptual model for fracture systems formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Tesi analizza le relazioni tra i processi di sviluppo agricolo e l’uso delle risorse naturali, in particolare di quelle energetiche, a livello internazionale (paesi in via di sviluppo e sviluppati), nazionale (Italia), regionale (Emilia Romagna) e aziendale, con lo scopo di valutare l’eco-efficienza dei processi di sviluppo agricolo, la sua evoluzione nel tempo e le principali dinamiche in relazione anche ai problemi di dipendenza dalle risorse fossili, della sicurezza alimentare, della sostituzione tra superfici agricole dedicate all’alimentazione umana ed animale. Per i due casi studio a livello macroeconomico è stata adottata la metodologia denominata “SUMMA” SUstainability Multi-method, multi-scale Assessment (Ulgiati et al., 2006), che integra una serie di categorie d’impatto dell’analisi del ciclo di vita, LCA, valutazioni costi-benefici e la prospettiva di analisi globale della contabilità emergetica. L’analisi su larga scala è stata ulteriormente arricchita da un caso studio sulla scala locale, di una fattoria produttrice di latte e di energia elettrica rinnovabile (fotovoltaico e biogas). Lo studio condotto mediante LCA e valutazione contingente ha valutato gli effetti ambientali, economici e sociali di scenari di riduzione della dipendenza dalle fonti fossili. I casi studio a livello macroeconomico dimostrano che, nonostante le politiche di supporto all’aumento di efficienza e a forme di produzione “verdi”, l’agricoltura a livello globale continua ad evolvere con un aumento della sua dipendenza dalle fonti energetiche fossili. I primi effetti delle politiche agricole comunitarie verso una maggiore sostenibilità sembrano tuttavia intravedersi per i Paesi Europei. Nel complesso la energy footprint si mantiene alta poiché la meccanizzazione continua dei processi agricoli deve necessariamente attingere da fonti energetiche sostitutive al lavoro umano. Le terre agricole diminuiscono nei paesi europei analizzati e in Italia aumentando i rischi d’insicurezza alimentare giacché la popolazione nazionale sta invece aumentando.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden verschiedene Wassermodelle in sogenannten Multiskalen-Computersimulationen mit zwei Auflösungen untersucht, in atomistischer Auflösung und in einer vergröberten Auflösung, die als "coarse-grained" bezeichnet wird. In der atomistischen Auflösung wird ein Wassermolekül, entsprechend seiner chemischen Struktur, durch drei Atome beschrieben, im Gegensatz dazu wird ein Molekül in der coarse-grained Auflösung durch eine Kugel dargestellt.rnrnDie coarse-grained Modelle, die in dieser Arbeit vorgestellt werden, werden mit verschiedenen coarse-graining Methoden entwickelt. Hierbei kommen hauptsächlich die "iterative Boltzmann Inversion" und die "iterative Monte Carlo Inversion" zum Einsatz. Beides sind struktur-basierte Ansätze, die darauf abzielen bestimmte strukturelle Eigenschaften, wie etwa die Paarverteilungsfunktionen, des zugrundeliegenden atomistischen Systems zu reproduzieren. Zur automatisierten Anwendung dieser Methoden wurde das Softwarepaket "Versatile Object-oriented Toolkit for Coarse-Graining Applications" (VOTCA) entwickelt.rnrnEs wird untersucht, in welchem Maße coarse-grained Modelle mehrere Eigenschaftenrndes zugrundeliegenden atomistischen Modells gleichzeitig reproduzieren können, z.B. thermodynamische Eigenschaften wie Druck und Kompressibilität oder strukturelle Eigenschaften, die nicht zur Modellbildung verwendet wurden, z.B. das tetraedrische Packungsverhalten, welches für viele spezielle Eigenschaft von Wasser verantwortlich ist.rnrnMit Hilfe des "Adaptive Resolution Schemes" werden beide Auflösungen in einer Simulation kombiniert. Dabei profitiert man von den Vorteilen beider Modelle:rnVon der detaillierten Darstellung eines räumlich kleinen Bereichs in atomistischer Auflösung und von der rechnerischen Effizienz des coarse-grained Modells, die den Bereich simulierbarer Zeit- und Längenskalen vergrössert.rnrnIn diesen Simulationen kann der Einfluss des Wasserstoffbrückenbindungsnetzwerks auf die Hydration von Fullerenen untersucht werden. Es zeigt sich, dass die Struktur der Wassermoleküle an der Oberfläche hauptsächlich von der Art der Wechselwirkung zwischen dem Fulleren und Wasser und weniger von dem Wasserstoffbrückenbindungsnetzwerk dominiert wird.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although sustainable land management (SLM) is widely promoted to prevent and mitigate land degradation and desertification, its monitoring and assessment (M&A) has received much less attention. This paper compiles methodological approaches which to date have been little reported in the literature. It draws lessons from these experiences and identifies common elements and future pathways as a basis for a global approach. The paper starts with local level methods where the World Overview of Conservation Approaches and Technologies (WOCAT) framework catalogues SLM case studies. This tool has been included in the local level assessment of Land Degradation Assessment in Drylands (LADA) and in the EU-DESIRE project. Complementary site-based approaches can enhance an ecological process-based understanding of SLM variation. At national and sub-national levels, a joint WOCAT/LADA/DESIRE spatial assessment based on land use systems identifies the status and trends of degradation and SLM, including causes, drivers and impacts on ecosystem services. Expert consultation is combined with scientific evidence and enhanced where necessary with secondary data and indicator databases. At the global level, the Global Environment Facility (GEF) knowledge from the land (KM:Land) initiative uses indicators to demonstrate impacts of SLM investments. Key lessons learnt include the need for a multi-scale approach, making use of common indicators and a variety of information sources, including scientific data and local knowledge through participatory methods. Methodological consistencies allow cross-scale analyses, and findings are analysed and documented for use by decision-makers at various levels. Effective M&A of SLM [e.g. for United Nations Convention to Combat Desertification (UNCCD)] requires a comprehensive methodological framework agreed by the major players.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wetting front is the zone where water invades and advances into an initially dry porous material and it plays a crucial role in solute transport through the unsaturated zone. Water is an essential part of the physiological process of all plants. Through water, necessary minerals are moved from the roots to the parts of the plants that require them. Water moves chemicals from one part of the plant to another. It is also required for photosynthesis, for metabolism and for transpiration. The leaching of chemicals by wetting fronts is influenced by two major factors, namely: the irregularity of the fronts and heterogeneity in the distribution of chemicals, both of which have been described by using fractal techniques. Soil structure can significantly modify infiltration rates and flow pathways in soils. Relations between features of soil structure and features of infiltration could be elucidated from the velocities and the structure of wetting fronts. When rainwater falls onto soil, it doesn?t just pool on surfaces. Water ?or another fluid- acts differently on porous surfaces. If the surface is permeable (porous) it seeps down through layers of soil, filling that layer to capacity. Once that layer is filled, it moves down into the next layer. In sandy soil, water moves quickly, while it moves much slower through clay soil. The movement of water through soil layers is called the the wetting front. Our research concerns the motion of a liquid into an initially dry porous medium. Our work presents a theoretical framework for studying the physical interplay between a stationary wetting front of fractal dimension D with different porous materials. The aim was to model the mass geometry interplay by using the fractal dimension D of a stationary wetting front. The plane corresponding to the image is divided in several squares (the minimum correspond to the pixel size) of size length ". We acknowledge the help of Prof. M. García Velarde and the facilities offered by the Pluri-Disciplinary Institute of the Complutense University of Madrid. We also acknowledge the help of European Community under project Multi-scale complex fluid flows and interfacial phenomena (PITN-GA-2008-214919). Thanks are also due to ERCOFTAC (PELNoT, SIG 14)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Históricamente la estrategia de localización de la infraestructura religiosa católica en Chile ha estado condicionada por intenciones destinadas a la captación y tutela de feligreses, proceso desarrollado a través de intervenciones que han generado externalidades difíciles de anticipar y posibles de visualizar en un marco temporal mayor. En este contexto la producción e instalación de los templos católicos en distintos lugares de la ciudad condicionaron los territorios y marcaron presencia en su afán por colonizar y mantener el dominio, mecanismo propio de la institución religiosa que se adaptó al medio y a las circunstancias político social para cumplir su misión y mantener el poder. En esta investigación se buscó identificar desde las edificaciones destinadas al culto, la relación escalar entre localización, modo de instalación y morfología que incluye la forma y técnica de construcción, reconociendo la manera cómo modifican los entornos, el efecto que provocan y las expectativas que abren a nuevas intervenciones. El escenario escogido para realizar el estudio correspondió a un período de la historia de la ciudad de Santiago de Chile no documentado en que las circunstancias políticas, económicas, sociales y culturales contribuyeron a que el modo de disposición de las edificaciones de culto condicionaron el desarrollo urbano y orientaron el crecimiento de la ciudad. El período en que se desarrolló el estudio correspondió a la época de mayor riqueza material y cultural de la historia del país y estuvo modelada por las intenciones y planes de desarrollo tendientes a consolidar lo que se ha denominado el modelo Republicano. Escenario en que el espacio público cobró interés y se transformó en el motor de los cambios e indicador de la escala de la ciudad, estableciendo las condiciones para que las distintas corrientes europeas se manifestaran en el hacer arquitectónico cambiando la imagen original de la ciudad colonial. Este proceso que ocurrió sobre la estructura existente, densificó la manzana a través de la subdivisión predial, que complementado con los avances tecnológicos permitieron mayores alturas de edificación, situación que dio origen a nuevas concepciones espaciales, posibles de desarrollar con los recursos materiales, intelectuales y técnicos disponibles. El estudio se centró en la centuria 1850-1950 analizando la forma como la infraestructura religiosa Católica se localizó en el tejido urbano adoptando distintas tipologías edilicias, en una época caracterizada por el eclecticismo arquitectónico. Específicamente se estudiaron las edificaciones que utilizaron reminiscencias góticas, identificando los casos más significativos, estableciendo el contexto en que se originaron e indagando en la significación que tuvieron por la función que cumplieron, considerando emplazamiento y conexión con el entorno construido, conformación, dimensiones, destino y patrocinios. El área de estudio se fundamentó por la concentración de construcciones con la tendencia historicista, producciones que en el corto y mediano plazo orientaron las transformaciones de la ciudad y por la presencia que conservan hasta estos días. Se observó la incidencia de la acción de la Iglesia Católica en las políticas de Estado, orientando las decisiones de planificación y ocupación del territorio, condicionando la localización de los templos a fin de conseguir las mayores coberturas de la población y el mayor rendimiento de las inversiones. En el contexto latinoamericano la construcción de iglesias, templos y catedrales con reminiscencias góticas fue una constante que caracterizó al último cuarto del siglo XIX y las tres primeras décadas del siglo XX. El estudio permitió conocer en términos cuantitativos y cualitativos la producción, destacando la morfología y materialidad caracterizada por la adopción de estrategias contemporáneas estructuralmente exigentes. Se observó la utilización de la arquitectura como un medio de acercamiento a la población, capaz de transformar a los edificios en símbolos barriales, que facilitaron la generación de identidad, al convertirse en los referentes materiales que se destacan, que se recuerdan y que asumen la representatividad de barrios, permaneciendo en el tiempo y convirtiéndose en íconos asociados a la cultura local. En síntesis, la instalación de las infraestructuras religiosas en la ciudad de Santiago fue consecuencia de un modo de producción, que entregó lugares de encuentro y símbolos para la ciudad, a través de la localización de los edificios que buscaron ocupar áreas visibles, relevantes y convocantes, lo que consiguieron mediante la instalación geográfica, central y equidistante de conglomerados residenciales consolidados o en vías de desarrollo, como también a través de edificaciones monumentales y siempre destacadas respecto de su entorno, lo que marcó exclusividad y dominio. La elección de tipos arquitectónicos fue coyuntural a los tiempos e inspirada en intelectuales y profesionales mayoritariamente foráneos que aportaron conocimientos y experiencia para auspiciar edificaciones que fueron reconocidas como señeras y precursoras de la época. La intensidad en el uso de los recursos que demandaron las exigentes estructuras obligó a la iglesia católica a establecer estrategias de financiación destinadas a suplir la falta de recursos provenientes del Estado. Para lo cual convocaron a distintos actores los que participaron desde sus fronteras y en función de sus intereses cubriendo desde el altruismo hasta la rentabilización de su patrimonio. La organización iglesia católica se comporta de la misma manera que cualquier otra organización: busca expandirse, concentrar, controlar y administrar. Busca codificar todo su entorno (Raffestin, 2011), busca trascender y materialmente lo logra desde sus construcciones. ABSTRACT Historically the location strategies of the catholic religious infrastructure in Chile has been conditioned by intentions aimed at attracting and guardianship of parishioners, process developed through interventions that have generated externalities difficult to anticipate and possible to visualize in a in a major temporary frame. In this context, the production and installation of the catholic churches in different places in the city determined the territories and marked presence in their quest to colonize and maintain domain, mechanism of the religious institution that was adapted to the environment and in the political and social circumstances to fulfill its mission and maintain power. This research sought to identify from the buildings intended for worship in a multi-scale relationship between location, the placement mode, morphology and shape and construction technique and the effect caused by them, the way how they alter the environments and the expectations that are open to new interventions. The chosen scenario for the study corresponded to a not documented period in the history of the city of Santiago de Chile in which political, economic, social and cultural circumstances contributed to the form of disposition of the buildings of worship that determined the urban development and guided the growth of the city. The study period was the epoch of largest material and cultural wealth of Chile history and it was modeled by the intentions and development plans tending to consolidate what has been named the Republican ideal. Scenario in which public space gained interest and became the engine of change and indicator of the scale of the city, establishing the conditions for the various European trends manifested themselves in transforming the original image of the colonial city. This process that took place on the existing structure, produced a higher density of the original blocks through the predial compartimentation, which supplemented with technological advances enabled greater building heights, a situation that gave rise to new spatial conceptions, possible of developing with the material resources, intellectuals and technicians available at the moment. The study focused on the century 1850-1950 by analyzing how the Catholic religious infrastructure was located in the urban fabric by adopting different typologies locality, in an epoch characterised by architectural eclecticism. Specifica lly, it is studied the buildings that used gothic reminiscences, identifying the most significant cases, establishing the context in which they originated and inquiring about the significance that they had for the role it played, considering location and connection to the built environment, shaping, dimensions, destination, and sponsorships. The study area was established by the concentration of buildings with this historicist trend, productions that in the short and medium term guided the transformation of the city and the presence that keeps up to these days. It was noted the incidence of the of the Catholic Church actions in guiding State policies, planning decisions and occupation of the territory, as well as conditioning the location of the temples in order to achieve greater coverage of the population and the greatest return on investment. In the context of Latin America the construction of churches, temples and cathedrals with reminiscences gothic was a constant that characterized the last quarter of the nineteenth century and the first three decades of the twentieth century. The study allowed to know in quantitative and qualitative terms the production of the period, highlighting the morphology and materiality characterized by contemporary and structurally challenging strategies. It was noted the use of architecture as a means of approaching to the population, able to transform buildings into neighborhood symbols, which facilitated the production of identity, to become the reference materials that stand out, that will be remembered and that assume the representativeness of neighborhoods, remaining in the time and becoming icons associated with the local culture. In synthesis, the installation of religious infrastructure in the city of Santiago was result of a mode of production, that provided meeting places and symbols for the city, through the location of buildings that sought to occupy visible, relevant and summoning areas, what they obtained by means of the geographical, central and equidistant installation of consolidated residential conglomerates cluster or about to development, as also through always outstanding and monumental buildings with respect to its surroundings, which marked uniqueness and domain. The choice of architectural types was related to the time and inspired by intellectuals and professionals mostly outsiders who contributed with expertise and experience to sponsor buildings were recognized as outstanding and precursor of the time. The intensity of use of the resources that requested the demanding structures forced to the Catholic church to establish funding strategies designed to compensate for the lack of funds from the State. For which convened to different actors who participated from their borders and depending on their interests covering from the altruism up to the rentabilización of its patrimony. The Catholic Church organization behaves the same way as any other organization: seeks to expand, focus, control and manage. Looking for coding the entire environment (Raffestin, 2011), seeks to transcend and succeeds materially from its building.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the consequences of enhanced biofuel production in regions and countries of the world that have announced plans to implement or expand on biofuel policies. The analysis considers biofuel policies implemented as binding blending targets for transportation fuels. The chosen quantitative modelling approach is two-fold: it combines the analysis of biofuel policies in a multi-sectoral economic model (MAGNET) with systematic variation of the functioning of capital and labour markets. This paper adds to existing research by considering biofuel policies in the EU, the US and various other countries with considerable agricultural production and trade, such as Brazil, India and China. Moreover, the application multi-sectoral modelling system with different assumptions on the mobility of factor markets allows for the observation of changes in economic indicators under different conditions of how factor markets work. Systematic variation of factor mobility indicates that the ‘burden’ of global biofuel policies is not equally distributed across different factors within agricultural production. Agricultural land, as the pre-dominant and sector-specific factor, is, regardless of different degrees of inter-sectoral or intra-sectoral factor mobility, the most important factor limiting the expansion of agricultural production. More capital and higher employment in agriculture will ease the pressure on additional land use – but only partly. To expand agricultural production at global scale requires both land and mobile factors adapted to increase total factor productivity in agriculture in the most efficient way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simplicity in design and minimal floor space requirements render the hydrocyclone the preferred classifier in mineral processing plants. Empirical models have been developed for design and process optimisation but due to the complexity of the flow behaviour in the hydrocyclone these do not provide information on the internal separation mechanisms. To study the interaction of design variables, the flow behaviour needs to be considered, especially when modelling the new three-product cyclone. Computational fluid dynamics (CFD) was used to model the three-product cyclone, in particular the influence of the dual vortex finder arrangement on flow behaviour. From experimental work performed on the UG2 platinum ore, significant differences in the classification performance of the three-product cyclone were noticed with variations in the inner vortex finder length. Because of this simulations were performed for a range of inner vortex finder lengths. Simulations were also conducted on a conventional hydrocyclone of the same size to enable a direct comparison of the flow behaviour between the two cyclone designs. Significantly, high velocities were observed for the three-product cyclone with an inner vortex finder extended deep into the conical section of the cyclone. CFD studies revealed that in the three-product cyclone, a cylindrical shaped air-core is observed similar to conventional hydrocyclones. A constant diameter air-core was observed throughout the inner vortex finder length, while no air-core was present in the annulus. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systems biology is based on computational modelling and simulation of large networks of interacting components. Models may be intended to capture processes, mechanisms, components and interactions at different levels of fidelity. Input data are often large and geographically disperse, and may require the computation to be moved to the data, not vice versa. In addition, complex system-level problems require collaboration across institutions and disciplines. Grid computing can offer robust, scaleable solutions for distributed data, compute and expertise. We illustrate some of the range of computational and data requirements in systems biology with three case studies: one requiring large computation but small data (orthologue mapping in comparative genomics), a second involving complex terabyte data (the Visible Cell project) and a third that is both computationally and data-intensive (simulations at multiple temporal and spatial scales). Authentication, authorisation and audit systems are currently not well scalable and may present bottlenecks for distributed collaboration particularly where outcomes may be commercialised. Challenges remain in providing lightweight standards to facilitate the penetration of robust, scalable grid-type computing into diverse user communities to meet the evolving demands of systems biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding and explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100 km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed ``hydrolytic weakening''. At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour. Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation. To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation. Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure. To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.