476 resultados para Estimateur de Bayes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main object of this paper is to discuss the Bayes estimation of the regression coefficients in the elliptically distributed simple regression model with measurement errors. The posterior distribution for the line parameters is obtained in a closed form, considering the following: the ratio of the error variances is known, informative prior distribution for the error variance, and non-informative prior distributions for the regression coefficients and for the incidental parameters. We proved that the posterior distribution of the regression coefficients has at most two real modes. Situations with a single mode are more likely than those with two modes, especially in large samples. The precision of the modal estimators is studied by deriving the Hessian matrix, which although complicated can be computed numerically. The posterior mean is estimated by using the Gibbs sampling algorithm and approximations by normal distributions. The results are applied to a real data set and connections with results in the literature are reported. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho descreve a especificação e implementação do protótipo Assistente de Feedback que ajuda os usuários a ajustarem os parâmetros do serviço de filtragem de mensagens vindas do correio eletrônico de sistemas como o Direto. O Assistente de Feedback é instalado no computador do usuário do Direto para monitorar suas preferências representadas pelas ações aplicadas nas mensagens do correio eletrônico. O trabalho apresenta, ainda, uma revisão bibliográfica sobre os conceitos gerais de probabilidades, redes Bayesianas e classificadores. Procura-se descrever as características gerais dos classificadores, em especial o Naive Bayes, sua lógica e seu desempenho comparado a outros classificadores. São abordados, também, conceitos relacionados ao modelo de perfil de usuário e o ambiente Direto. O Naive Bayes torna-se atraente para ser utilizado no Assistente de Feedback por apresentar bom desempenho sobre os demais classificadores e por ser eficiente na predição, quando os atributos são independentes entre si. O Assistente de Feedback utiliza um classificador Naive Bayes para predizer as preferências por intermédio das ações do usuário. Utiliza, também, pesos que representarão a satisfação do usuário para os termos extraídos do corpo da mensagem. Esses pesos são associados às ações do usuário para estimar os termos mais interessantes e menos interessantes, pelo valor de suas médias finais. Quando o usuário desejar alterar os filtros de mensagens do Direto, ele solicita ao Assistente de Feedback sugestões para possíveis exclusões dos termos menos interessantes e as possíveis inclusões dos termos mais interessantes. O protótipo é testado utilizando dois métodos de avaliação para medir o grau de precisão e o desempenho do Assistente de Feedback. Os resultados obtidos na avaliação de precisão apresentam valores satisfatórios, considerando o uso de cinco classes pelo classificador do Assistente de Feedback. Os resultados dos testes de desempenho permitem observar que, se forem utilizadas máquinas com configurações mais atualizadas, os usuários conseguirão receber sugestões com tempo de respostas mais toleráveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most widely used updating rule for non-additive probalities is the Dempster-Schafer rule. Schmeidles and Gilboa have developed a model of decision making under uncertainty based on non-additive probabilities, and in their paper “Updating Ambiguos Beliefs” they justify the Dempster-Schafer rule based on a maximum likelihood procedure. This note shows in the context of Schmeidler-Gilboa preferences under uncertainty, that the Dempster-Schafer rule is in general not ex-ante optimal. This contrasts with Brown’s result that Bayes’ rule is ex-ante optimal for standard Savage preferences with additive probabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kalai and Lebrer (93a, b) have recently show that for the case of infinitely repeated games, a coordination assumption on beliefs and optimal strategies ensures convergence to Nash equilibrium. In this paper, we show that for the case of repeated games with long (but finite) horizon, their condition does not imply approximate Nash equilibrium play. Recently Kalai and Lehrer (93a, b) proved that a coordination assumption on beliefs and optimal strategies, ensures that pIayers of an infinitely repeated game eventually pIay 'E-close" to an E-Nash equilibrium. Their coordination assumption requires that if players believes that certain set of outcomes have positive probability then it must be the case that this set of outcomes have, in fact, positive probability. This coordination assumption is called absolute continuity. For the case of finitely repeated games, the absolute continuity assumption is a quite innocuous assumption that just ensures that pIayers' can revise their priors by Bayes' Law. However, for the case of infinitely repeated games, the absolute continuity assumption is a stronger requirement because it also refers to events that can never be observed in finite time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivos: Desenvolver e validar instrumento que auxilie o pediatra a determinar a probabilidade de ocorrência do abuso sexual em crianças. Métodos: Estudo de caso-controle com 201 crianças que consultaram em ambulatórios de pediatria e locais de referência para vítimas de abuso sexual, entre março e novembro de 2004: grupo caso (com suspeita ou revelação de abuso sexual) e grupo controle (sem suspeita de abuso sexual). Aplicou-se, junto aos responsáveis, um questionário com 18 itens e cinco opções de respostas segundo a escala Likert, abordando comportamento, sintomas físicos e emocionais apresentados pelas crianças. Excluíram-se nove crianças sem controle esfincteriano e um item respondido por poucas pessoas. A validade e consistência interna dos itens foram avaliadas com obtenção de coeficientes de correlação (Pearson, Spearman e Goodman-Kruskal), coeficiente α de Cronbach e cálculo da área da curva ROC. Calculou-se, após, a razão de verossimilhança (RV) e os valores preditivo positivos (VPP) para os cinco itens do questionário que apresentaram os melhores desempenhos. Resultados: Obteve-se um questionário composto pelos cinco itens que melhor discriminaram crianças com e sem abuso sexual em dois contextos. Cada criança recebeu um escore resultante da soma das respostas com pesos de 0 a 4 (amplitude de 0 a 20), o qual, através do teorema de Bayes (RV), indicou sua probabilidade pós-teste (VPP) de abuso sexual. Conclusões: O instrumento proposto é útil por ser de fácil aplicação, auxiliando o pediatra na identificação de crianças vítimas de abuso sexual. Ele fornecerá, conforme o escore obtido, a probabilidade (VPP) de abuso sexual, orientando na conduta de cuidado à criança.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Redes Bayesianas podem ser ferramentas poderosas para construção de modelos econômico-financeiros utilizados para auxílio à tomada de decisão em situações que envolvam grau elevado de incerteza. Relações não-lineares entre variáveis não são capturadas em modelos econométricos lineares. Especialmente em momentos de crise ou de ruptura, relações lineares, em geral, não mais representam boa aproximação da realidade, contribuindo para aumentar a distância entre os modelos teóricos de previsão e dados reais. Neste trabalho, é apresentada uma metodologia para levantamento de dados e aplicação de Redes Bayesianas na obtenção de modelos de crescimento de fluxos de caixa de empresas brasileiras. Os resultados são comparados a modelos econométricos de regressão múltipla e finalmente comparados aos dados reais observados no período. O trabalho é concluído avaliando-se as vantagens de desvantagens da utilização das Redes de Bayes para esta aplicação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The real effects of an imperfectly credible disinflation depend critically on the extent of price rigidity. Therefore, the study of how policymakers’ credibility affects the outcome of an announced disinflation should not be dissociated from the analysis of the determinants of the frequency of price adjustments. In this paper we examine how credibility affects the outcome of a disinflation in a model with endogenous timedependent pricing rules. Both the initial degree of price ridigity, calculated optimally, and, more notably, the changes in contract length during disinflation play an important role in the explanation of the effects of imperfect credibility. We initially evaluate the costs of disinflation in a setup where credibility is exogenous, and then allow agents to use Bayes rule to update beliefs about the “type” of monetary authority that they face. In both cases, the interaction between the endogeneity of time-dependent rules and imperfect credibility increases the output costs of disinflation, but the pattern of the output path is more realistic in the case with learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose mo deIs to analyze animal growlh data wilh lhe aim of eslimating and predicting quanlities of Liological and economical interest such as the maturing rate and asymptotic weight. lt is also studied lhe effect of environmenlal facLors of relevant influence in the growlh processo The models considered in this paper are based on an extension and specialization of the dynamic hierarchical model (Gamerman " Migon, 1993) lo a non-Iinear growlh curve sdLillg, where some of the growth curve parameters are considered cxchangeable among lhe unils. The inferencc for thcse models are appruximale conjugale analysis Lascd on Taylor series cxpallsiulIs aliei linear Bayes procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelos para detecção de fraude são utilizados para identificar se uma transação é legítima ou fraudulenta com base em informações cadastrais e transacionais. A técnica proposta no estudo apresentado, nesta dissertação, consiste na de Redes Bayesianas (RB); seus resultados foram comparados à técnica de Regressão Logística (RL), amplamente utilizada pelo mercado. As Redes Bayesianas avaliadas foram os classificadores bayesianos, com a estrutura Naive Bayes. As estruturas das redes bayesianas foram obtidas a partir de dados reais, fornecidos por uma instituição financeira. A base de dados foi separada em amostras de desenvolvimento e validação por cross validation com dez partições. Naive Bayes foram os classificadores escolhidos devido à simplicidade e a sua eficiência. O desempenho do modelo foi avaliado levando-se em conta a matriz de confusão e a área abaixo da curva ROC. As análises dos modelos revelaram desempenho, levemente, superior da regressão logística quando comparado aos classificadores bayesianos. A regressão logística foi escolhida como modelo mais adequado por ter apresentado melhor desempenho na previsão das operações fraudulentas, em relação à matriz de confusão. Baseada na área abaixo da curva ROC, a regressão logística demonstrou maior habilidade em discriminar as operações que estão sendo classificadas corretamente, daquelas que não estão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.