917 resultados para Elementary and high schools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By far the greater part of our understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine type compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares this with low-speed laboratory data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of an experimental investigation across a broad range of source Froude numbers, 0. 4 ≤ Fr 0 ≤ 45, into the dynamics, morphology and rise heights of Boussinesq turbulent axisymmetric fountains in quiescent uniform environments. Typically, these fountains are thought to rise to an initial height, z i, before settling back and fluctuating about a lesser (quasi-) steady height, z ss. Our measurements show that this is not always the case and the ratio of the fountain's initial rise height to steady rise height, λ = z i/z ss, varies widely, 0. 5 ≈ λ ≈ 2, across the range of Fr 0 investigated. As a result of near-ideal start-up conditions provided by the experimental set-up we were consistently able to form a vortex at the fountain's front. This enabled new insights into two features of the initial rise of turbulent fountains. Firstly, for 1. 0 ≈ Fr 0 ≈ 1. 7 the initial rise height is less than the steady rise height. Secondly, for Fr 0 ≈ 5. 5, the vortex formed at the fountain's front pinches off, separates from the main body and rises high above the fountain; there is thus a third rise height to consider, namely, the maximum vortex rise height, z v. From our observations we propose classifying turbulent axisymmetric fountains into five regimes (as opposed to the current three regimes) and present detailed descriptions of the flow in each. Finally, based on an analysis of the rise height fluctuations and the width of fountains in (quasi-) steady state we provide further insight into the physical cause of height fluctuations. © 2011 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnitude and frequency of vertical fluctuations of the top of an axisymmetric miscible Boussinesq fountain forms the focus of this work. We present measurements of these quantities for saline-aqueous fountains in uniform quiescent surroundings. Our results span source Froude numbers 0.3 ≤ Fr 0 ≤ 40 and, thereby, encompass very weak, weak, intermediate and forced classes of fountain. We identify distinct scalings, based on known quantities at the fountain source, for the frequency of fountain height fluctuations which collapse our data within bands of Fr0. Notably, our scalings reveal that the (dimensionless) frequency takes a constant value within each band. These results highlight characteristic time scales for the fluctuations which we decompose into a single, physically apparent, length scale and velocity scale within each band. Moreover, within one particular band, spanning source Froude numbers towards the lower end of the full range considered, we identify unexpectedly long-period fluctuations indicating a near balance of inertia and (opposing) buoyancy at the source. Our analysis identifies four distinct classes of fluctuation behaviour (four bands of Fr 0) and this classification matches well with existing classifications of fountains based on rise heights. As such, we show that an analysis of the behaviour of the fountain top alone, rather than the entire fountain, provides an alternative approach to classifying fountains. The similarity of classifications based on the two different methods confirms that the boundaries between classes mark tangible changes in the physics of fountains. For high Fr0 we show that the dominant fluctuations occur at the scale of the largest eddies which can be contained within the fountain near its top. Extending this, we develop a Strouhal number, Strtop, based on experimental measures of the fountain top, defined such that Strtop = 1 would suggest the dominant fluctuations are caused by a continual cycle of eddies forming and collapsing at this largest physical scale. For high- Fr 0 fountains we find Strtop ≈ 0. 9. © 2013 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phocoenids are generally considered to be nonwhistling species that produce only high-frequency pulsed sounds. Here our results show that neonatal finless porpoises (Neophocaena phocaenoides) frequently produce clear low-frequency (2-3 kHz) pulsed signals, without distinct high-frequency energy, just after birth and can produce both low- (2-3 kHz) and high-frequency (>100 kHz) pulsed signals simultaneously until about 20 days postnatal. The results indicate that low-frequency signals of neonatal finless porpoises are not an early form of high-frequency signals and suggest that low- and high-frequency signals may be produced by different sound production mechanisms. (C) 2008 Acoustical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel integratable and high speed InGaAsP multi-quantum well (MQW) complex-coupled distributed feedback (DFB) laser is successfully fabricated on a semi-insulating substrate. The fabricated ridge DFB laser exhibits a threshold current of 26 mA, a slope efficiency of 0.14 W.A(-1) and a side mode suppression ratio of 40 dB together with a 3 dB bandwidth of more than 8 GHz. The device is suitable for 10 Gbit/s optical fiber communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and simple way to prepare high-reflectivity bottom mirrors for Si-based micro-cavity devices is reported. The bottom mirror was deposited in the hole, which was etched from the backside of the sample by ethylenediamine-pyrocatechol-water solution with the buried Sio, layer in the silicon-on-insulator substrate as the etching-stop layer. The high-reflectivity of the bottom mirror deposited in the hole and the narrow hill width at half maximum of the cavity formed by this method both indicate the successful preparation of the bottom mirror for Si-based micro-cavity devices.