948 resultados para Electron pulses
Resumo:
One of the main problems in transmission electron microscopy in thebiological field is the tri-dimensionality. This article explains the technicalprocedures and requirements to prepare biological specimens preserving themclosest to their native state to perform 3D reconstruction of the macromolecularcomplexes and cellular structures in their natural environment.
Resumo:
Transmission electron microscopy is a proven technique in the field of cell biology and a very useful tool in biomedical research. Innovation and improvements in equipment together with the introduction of new technology have allowed us to improve our knowledge of biological tissues, to visualizestructures better and both to identify and to locate molecules. Of all the types ofmicroscopy exploited to date, electron microscopy is the one with the mostadvantageous resolution limit and therefore it is a very efficient technique fordeciphering the cell architecture and relating it to function. This chapter aims toprovide an overview of the most important techniques that we can apply to abiological sample, tissue or cells, to observe it with an electron microscope, fromthe most conventional to the latest generation. Processes and concepts aredefined, and the advantages and disadvantages of each technique are assessedalong with the image and information that we can obtain by using each one ofthem.
Resumo:
In the present work we review the way in which the electron-matter interaction allows us to perform electron energy loss spectroscopy (EELS), as well as the latest developments in the technique and some of the most relevant results of EELS as a characterization tool in nanoscience and nanotechnology.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
This article summarizes the basic principles of electron probe microanalysis, with examples of applications in materials science and geology that illustrate the capabilities of the technique.
Resumo:
Nowadays Scanning Electron Microscopy (SEM) is a basic and fundamental tool in the study of geologic samples. The collision of a highlyaccelerated electron beam with the atoms of a solid sample results in theproduction of several radiation types than can be detected and analysed byspecific detectors, providing information of the chemistry and crystallography ofthe studied material. From this point of view, the chamber of a SEM can beconsidered as a laboratory where different experiments can be carried out. Theapplication of SEM to geology, especially in the fields of mineralogy andpetrology has been summarised by Reed (1996).The aim of this paper is to showsome recent applications in the characterization of geologic materials.
Resumo:
This article summarizes the basic principles of scanning electron microscopy and the capabilities of the technique with different examples ofapplications in biomedical and biological research.
Resumo:
Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse. The results demonstrate the efficient suppression of 1H resonances bound to C3 of Glu and Gln, and C4 of Glu, which allows the 1H resonances bound to C6 of NAA and C4 of Gln to be revealed. The measured time course of the resolved labeling into NAA C6 with the new scheme was consistent with the slow turnover of NAA.
Resumo:
The objective of this work was to investigate possible modes of action of the yeast Cryptococcus magnus in controlling anthracnose (Colletotrichum gloeosporioides) on post harvested papaya fruits. Scanning electron microscopy was used to analyze the effect of the yeast on inoculations done after harvest. Results showed that C. magnus is able to colonize wound surfaces much faster than the pathogen, outcompeting the later for space and probably for nutrients. In addition, C. magnus produces a flocculent matrix, which affects hyphae integrity. The competition for space and the production of substances that affect hyphae integrity are among the most important modes of action of this yeast.
Resumo:
Stable protein-DNA complexes can be assembled in vitro at the 5' end of Xenopus laevis vitellogenin genes using extracts of nuclei from estrogen-induced frog liver and visualized by electron microscopy. Complexes at the three following sites can be identified on the gene B2: the transcription initiation site, the estrogen responsive element (ERE) and in the first intron. The complex at the transcription initiation site is stabilized by dinucleotides and thus represents a ternary transcription complex. The formation of the complexes at the two other sites is enhanced by estrogen and is reduced by tamoxifen, an antagonist of estrogen, while this latter effect is reversed by adding an excess of hormone. No sequence homology is apparent between the site containing the ERE and the binding site in intron I and functional tests in MCF-7 cells suggest that these two sites are not equivalent. Finally, we made use of previously characterized deletion mutants of the 5' flanking region of the gene B1, a close relative of the gene B2, to demonstrate that the 13-bp palindromic core element of the ERE is involved in the formation of the complexes observed upstream of the transcription initiation site.
Resumo:
Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.
Resumo:
In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼500nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples.
Resumo:
Distribution of fibronectin-like immunoreactivity was studied in the area opaca of the young chick embryo (stages 4-6 HH) by use of the immunofluorescence and protein A-coupled to colloidal gold techniques. Fibronectin, associated to the basement membrane, formed a fibrillar network, the pattern of which changed from the centre to the periphery of the area opaca. At the ultrastructural level, differences in fibronectin distribution were found between non-moving and moving cells. The epithelial-like cells presented fibronectin staining exclusively on their basal side. Actively migrating cells (edge and mesodermal cells) showed immunoreactive material localized around their entire surface and within the cytoplasm. The fibronectin distribution is discussed in relation to three important phenomena taking place during the early growth of the area opaca: anchorage and migration of the edge cells, modification of cell shape in relation to mechanical tension, and expansion of the area vasculosa.
Resumo:
Résumé L'eau est souvent considérée comme une substance ordinaire puisque elle est très commune dans la nature. En fait elle est la plus remarquable de toutes les substances. Sans l'eau la vie sur la terre n'existerait pas. L'eau représente le composant majeur de la cellule vivante, formant typiquement 70 à 95% de la masse cellulaire et elle fournit un environnement à d'innombrables organismes puisque elle couvre 75% de la surface de terre. L'eau est une molécule simple faite de deux atomes d'hydrogène et un atome d'oxygène. Sa petite taille semble en contradiction avec la subtilité de ses propriétés physiques et chimiques. Parmi celles-là, le fait que, au point triple, l'eau liquide est plus dense que la glace est particulièrement remarquable. Malgré son importance particulière dans les sciences de la vie, l'eau est systématiquement éliminée des spécimens biologiques examinés par la microscopie électronique. La raison en est que le haut vide du microscope électronique exige que le spécimen biologique soit solide. Pendant 50 ans la science de la microscopie électronique a adressé ce problème résultant en ce moment en des nombreuses techniques de préparation dont l'usage est courrant. Typiquement ces techniques consistent à fixer l'échantillon (chimiquement ou par congélation), remplacer son contenu d'eau par un plastique doux qui est transformé à un bloc rigide par polymérisation. Le bloc du spécimen est coupé en sections minces (denviron 50 nm) avec un ultramicrotome à température ambiante. En général, ces techniques introduisent plusieurs artefacts, principalement dû à l'enlèvement d'eau. Afin d'éviter ces artefacts, le spécimen peut être congelé, coupé et observé à basse température. Cependant, l'eau liquide cristallise lors de la congélation, résultant en une importante détérioration. Idéalement, l'eau liquide est solidifiée dans un état vitreux. La vitrification consiste à refroidir l'eau si rapidement que les cristaux de glace n'ont pas de temps de se former. Une percée a eu lieu quand la vitrification d'eau pure a été découverte expérimentalement. Cette découverte a ouvert la voie à la cryo-microscopie des suspensions biologiques en film mince vitrifié. Nous avons travaillé pour étendre la technique aux spécimens épais. Pour ce faire les échantillons biologiques doivent être vitrifiés, cryo-coupées en sections vitreuse et observées dans une cryo-microscope électronique. Cette technique, appelée la cryo- microscopie électronique des sections vitrifiées (CEMOVIS), est maintenant considérée comme étant la meilleure façon de conserver l'ultrastructure de tissus et cellules biologiques dans un état très proche de l'état natif. Récemment, cette technique est devenue une méthode pratique fournissant des résultats excellents. Elle a cependant, des limitations importantes, la plus importante d'entre elles est certainement dû aux artefacts de la coupe. Ces artefacts sont la conséquence de la nature du matériel vitreux et le fait que les sections vitreuses ne peuvent pas flotter sur un liquide comme c'est le cas pour les sections en plastique coupées à température ambiante. Le but de ce travail a été d'améliorer notre compréhension du processus de la coupe et des artefacts de la coupe. Nous avons ainsi trouvé des conditions optimales pour minimiser ou empêcher ces artefacts. Un modèle amélioré du processus de coupe et une redéfinitions des artefacts de coupe sont proposés. Les résultats obtenus sous ces conditions sont présentés et comparés aux résultats obtenus avec les méthodes conventionnelles. Abstract Water is often considered to be an ordinary substance since it is transparent, odourless, tasteless and it is very common in nature. As a matter of fact it can be argued that it is the most remarkable of all substances. Without water life on Earth would not exist. Water is the major component of cells, typically forming 70 to 95% of cellular mass and it provides an environment for innumerable organisms to live in, since it covers 75% of Earth surface. Water is a simple molecule made of two hydrogen atoms and one oxygen atom, H2O. The small size of the molecule stands in contrast with its unique physical and chemical properties. Among those the fact that, at the triple point, liquid water is denser than ice is especially remarkable. Despite its special importance in life science, water is systematically removed from biological specimens investigated by electron microscopy. This is because the high vacuum of the electron microscope requires that the biological specimen is observed in dry conditions. For 50 years the science of electron microscopy has addressed this problem resulting in numerous preparation techniques, presently in routine use. Typically these techniques consist in fixing the sample (chemically or by freezing), replacing its water by plastic which is transformed into rigid block by polymerisation. The block is then cut into thin sections (c. 50 nm) with an ultra-microtome at room temperature. Usually, these techniques introduce several artefacts, most of them due to water removal. In order to avoid these artefacts, the specimen can be frozen, cut and observed at low temperature. However, liquid water crystallizes into ice upon freezing, thus causing severe damage. Ideally, liquid water is solidified into a vitreous state. Vitrification consists in solidifying water so rapidly that ice crystals have no time to form. A breakthrough took place when vitrification of pure water was discovered. Since this discovery, the thin film vitrification method is used with success for the observation of biological suspensions of. small particles. Our work was to extend the method to bulk biological samples that have to be vitrified, cryosectioned into vitreous sections and observed in cryo-electron microscope. This technique is called cryo-electron microscopy of vitreous sections (CEMOVIS). It is now believed to be the best way to preserve the ultrastructure of biological tissues and cells very close to the native state for electron microscopic observation. Since recently, CEMOVIS has become a practical method achieving excellent results. It has, however, some sever limitations, the most important of them certainly being due to cutting artefacts. They are the consequence of the nature of vitreous material and the fact that vitreous sections cannot be floated on a liquid as is the case for plastic sections cut at room temperature. The aim of the present work has been to improve our understanding of the cutting process and of cutting artefacts, thus finding optimal conditions to minimise or prevent these artefacts. An improved model of the cutting process and redefinitions of cutting artefacts are proposed. Results obtained with CEMOVIS under these conditions are presented and compared with results obtained with conventional methods.
Resumo:
Les échantillons biologiques ne s?arrangent pas toujours en objets ordonnés (cristaux 2D ou hélices) nécessaires pour la microscopie électronique ni en cristaux 3D parfaitement ordonnés pour la cristallographie rayons X alors que de nombreux spécimens sont tout simplement trop << gros D pour la spectroscopie NMR. C?est pour ces raisons que l?analyse de particules isolées par la cryo-microscopie électronique est devenue une technique de plus en plus importante pour déterminer la structure de macromolécules. Néanmoins, le faible rapport signal-sur-bruit ainsi que la forte sensibilité des échantillons biologiques natifs face au faisceau électronique restent deux parmi les facteurs limitant la résolution. La cryo-coloration négative est une technique récemment développée permettant l?observation des échantillons biologiques avec le microscope électronique. Ils sont observés à l?état vitrifié et à basse température, en présence d?un colorant (molybdate d?ammonium). Les avantages de la cryo-coloration négative sont étudiés dans ce travail. Les résultats obtenus révèlent que les problèmes majeurs peuvent êtres évités par l?utilisation de cette nouvelle technique. Les échantillons sont représentés fidèlement avec un SNR 10 fois plus important que dans le cas des échantillons dans l?eau. De plus, la comparaison de données obtenues après de multiples expositions montre que les dégâts liés au faisceau électronique sont réduits considérablement. D?autre part, les résultats exposés mettent en évidence que la technique est idéale pour l?analyse à haute résolution de macromolécules biologiques. La solution vitrifiée de molybdate d?ammonium entourant l?échantillon n?empêche pas l?accès à la structure interne de la protéine. Finalement, plusieurs exemples d?application démontrent les avantages de cette technique nouvellement développée.<br/><br/>Many biological specimens do not arrange themselves in ordered assemblies (tubular or flat 2D crystals) suitable for electron crystallography, nor in perfectly ordered 3D crystals for X-ray diffraction; many other are simply too large to be approached by NMR spectroscopy. Therefore, single-particles analysis has become a progressively more important technique for structural determination of large isolated macromolecules by cryo-electron microscopy. Nevertheless, the low signal-to-noise ratio and the high electron-beam sensitivity of biological samples remain two main resolution-limiting factors, when the specimens are observed in their native state. Cryo-negative staining is a recently developed technique that allows the study of biological samples with the electron microscope. The samples are observed at low temperature, in the vitrified state, but in presence of a stain (ammonium molybdate). In the present work, the advantages of this novel technique are investigated: it is shown that cryo-negative staining can generally overcome most of the problems encountered with cryo-electron microscopy of vitrified native suspension of biological particles. The specimens are faithfully represented with a 10-times higher SNR than in the case of unstained samples. Beam-damage is found to be considerably reduced by comparison of multiple-exposure series of both stained and unstained samples. The present report also demonstrates that cryo-negative staining is capable of high- resolution analysis of biological macromolecules. The vitrified stain solution surrounding the sample does not forbid the access to the interna1 features (ie. the secondary structure) of a protein. This finding is of direct interest for the structural biologist trying to combine electron microscopy and X-ray data. developed electron microscopy technique. Finally, several application examples demonstrate the advantages of this newly