901 resultados para EPITHELIAL MORPHOGENESIS
Resumo:
Mammary epithelial cells cultured on a concentrated laminin-rich extracellular matrix formed 3D acinar structures that matured to polarized monolayers surrounding a lumen. In the absence of glucocorticoids mature acinus formation failed and the expression of an acinus-associated, activator protein 1 (AP1) and nuclear factor kappaB transcription factor DNA-binding profile was lost. Treatment with the JNK inhibitor, SP600125, caused similar effects, whereas normal organization of the mammary epithelial cells as acini caused JNK activation in a glucocorticoid-dependent manner. The forming acini expressed BRCA1, GADD45beta, MEKK4, and the JNK activating complex GADD 45beta-MEKK4 in a glucocorticoid-dependent fashion. JNK catalyzed phosphorylation of c-Jun was also detected in the acini. In addition, expression of beta4 integrin and in situ occupation of its promoter by AP1 components, c-Jun and Fos, was glucocorticoid dependent. These results suggest that glucocortocoid signaling regulates acinar integrity through a pathway involving JNK regulation of AP1 transcription factors and beta4 integrin expression.
Resumo:
Mammary epithelial cells in primary cell culture require both growth factors and specific extracellular matrix (ECM)-attachment for survival. Here we demonstrate for the first time that inhibition of the ECM-induced Erk 1/Erk 2 (p42/44 MAPK) pathway, by PD 98059, leads to apoptosis in these cells. Associated with this cell death is a possible compensatory signalling through the p38 MAP kinase pathway the inhibition of which, by SB 203580, leads to a more rapid onset of apoptosis. This provides evidence for a hitherto undescribed Erk 1/Erk 2 to p38 MAP kinase pathway 'cross-talk' that is essential for the survival of these cells. The cell death associated with inhibition of these two MAP kinase pathways however, occurred in the presence of insulin that activates the classical PI-3 kinase-dependent Akt/PKB survival signals and Akt phosphorylation. Cell death induced by inhibition of the MAP kinase pathways did not affect Akt phosphorylation and may, thus, be independent of PI-3 kinase signalling.
Resumo:
The p53 family of transcription factors is made up of p53, p63 and p73, which share significant structural homology. In particular, transcriptional complexity and the expression of multiple protein isoforms are an emergent trait of all family members. p63 is the evolutionarily eldest member of the p53 family and the various isoforms have critical roles in the development of stratifying epithelia. Recent results have uncovered additional splice variants, adding to the complexity of the transcriptional architecture of p63. These observations and the emerging extensive interplay between p63 and p53 in development, proliferation and differentiation underline the importance of considering all isoforms and family members in studies of the function of p53 family members.
Resumo:
Signaling between the epithelium and stromal cells is crucial for growth, differentiation, and repair of the epithelium. Although the retinoblastoma protein (Rb) is known to regulate the growth of keratinocytes in a cell-autonomous manner, here we describe a function of Rb in the stromal compartment. We find that Rb depletion in fibroblasts leads to inhibition of differentiation and enhanced proliferation of the epithelium. Analysis of conditioned medium identified that keratinocyte growth factor (KGF) levels were elevated following Rb depletion. These findings were also observed with organotypic co-cultures. Treatment of keratinocytes with KGF inhibited differentiation and enhanced keratinocyte proliferation, whereas reduction of KGF levels in Rb-depleted fibroblasts was able to restore expression of differentiation markers. Our findings suggest a crucial role for dermal fibroblasts in regulating the differentiation and proliferation of keratinocytes, and we demonstrate a role for stromal Rb in this cross-talk.Journal of Investigative Dermatology advance online publication, 14 June 2012;doi:10.1038/jid.2012.201.
Resumo:
Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.
Resumo:
The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-?B. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF.
Resumo:
Up to 50% of epithelial ovarian cancers (EOC) display defects in the homologous recombination (HR) pathway. We sought to determine the ramifications of the homologous recombination-deficient (HRD) status on the clinicopathologic features, chemotherapy response, and survival outcomes of patients with EOCs. HR status was determined in primary cultures from ascitic fluid in 50 chemotherapy-naïve patients by a functional RAD51 immunofluorescence assay and correlated with in vitro sensitivity to the PARP inhibitor (PARPi), rucaparib. All patients went on to receive platinum-based chemotherapy; platinum sensitivity, tumor progression, and overall survival were compared prospectively in HR-competent versus HRD patients. Compared with HR-competent patients, the HRD group was predominantly serous with a higher median CA125 at presentation. HRD was associated with higher ex vivo PARPi sensitivity and clinical platinum sensitivity. Median follow-up duration was 14 months; patients in the HRD group had lower tumor progression rates at 6 months, lower overall/disease-specific death rates at 12 months, and higher median survival. We therefore suggest that HRD as predicted by a functional RAD51 assay correlates with in vitro PARPi sensitivity, clinical platinum sensitivity, and improved survival outcome.
Resumo:
Background and Aim: Inflammatory bowel diseases (IBD) are immune-mediated chronic diseases that are characterized by an overreaction of the intestinal immune system to the intestinal microbiota. VSL#3, a mixture of 8 different lactic acid bacteria, is a clinically relevant probiotic compound in the context of IBD, but the bacterial structures and molecular mechanisms underlying the observed protective effects are largely unknown. The intestinal epithelium plays a very important role in the maintenance of the intestinal homeostasis, as the intestinal epithelial cells (IEC) are capable of sensing, processing, and reacting upon signals from the luminal microbiota and the intestinal immune system. This immune regulatory function of the IEC is lost in IBD owing to dysregulated activation of the IEC. Thus, the aim of this study was to reveal protective mechanisms of VSL#3 on IEC function.
Results: In vitro, VSL#3 was found to selectively inhibit activation-induced secretion of the T-cell chemokine interferon-inducible protein (IP)-10 in IEC. Cell wall-associated proteins of VSL#3-derived Lactobacillus casei (L. casei) were identified to be the active anti-inflammatory component of VSL#3. Mechanistically, L. casei did not impair initial IP-10 protein production, but induced posttranslational degradation of IP-10 in IEC. Feeding studies in tumor necrosis factor (TNF)(Delta ARE/+) mice, a mouse model for experimental ileitis, revealed that neither VSL#3 nor L. casei is capable of reducing ileal inflammation. Even preweaning feeding of VSL#3 did not prevent the development of severe ileitis in TNF Delta ARE/+ mice. In contrast, VSL#3 feeding studies in IL-10-/- mice, a model for experimental colitis, revealed that VSL#3 has local, intestinal compartment-specific protective effects on the development of inflammation. Reduced histopathologic inflammation in the cecum of IL-10-/- mice after VSL#3 treatment was found to correlate with reduced levels of IP-10 protein in primary cecal epithelial cells.
Conclusion and Outlook: These results suggest that the inhibitory effect of VSL#3-derived L. casei on IP-10 secretion in IEC is an important probiotic mechanism that contributes to the anti-inflammatory effects of VSL#3 in specific subsets of patients with IBD. An important future aim is the identification of the active probiotic protein, which could serve as a basis for the development of new efficient therapies in the context of IBD.
Resumo:
Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-?wca ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfa, kc, and il6 than the wild type. ompA mutants activated NF-?B, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-?B-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-?B, whereas 52145-?wca ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a common commensal of the human nasopharynx, but causes opportunistic infection when the respiratory tract is compromised by infection or disease. The ability of NTHi to invade epithelial cells has been described, but the underlying molecular mechanisms are poorly characterized. We previously determined that NTHi promotes phosphorylation of the serine-threonine kinase Akt in A549 human lung epithelial cells, and that Akt phosphorylation and NTHi cell invasion are prevented by inhibition of phosphoinositide 3-kinase (PI3K). Because PI3K-Akt signalling is associated with several host cell networks, the purpose of the current study was to identify eukaryotic molecules important for NTHi epithelial invasion. We found that inhibition of Akt activity reduced NTHi internalization; differently, bacterial entry was increased by phospholipase C?1 inhibition but was not affected by protein kinase inhibition. We also found that a5 and ß1 integrins, and the tyrosine kinases focal adhesion kinase and Src, are important for NTHi A549 cell invasion. NTHi internalization was shown to be favoured by activation of Rac1 guanosine triphosphatase (GTPase), together with the guanine nucleotide exchange factor Vav2 and the effector Pak1. Also, Pak1 might be associated with inactivation of the microtubule destabilizing agent Op18/stathmin, to facilitate microtubule polymerization and NTHi entry. Conversely, inhibition of RhoA GTPase and its effector ROCK increased the number of internalized bacteria. Src and Rac1 were found to be important for NTHi-triggered Akt phosphorylation. An increase in host cyclic AMP reduced bacterial entry, which was linked to protein kinase A. These findings suggest that NTHi finely manipulates host signalling molecules to invade respiratory epithelial cells.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.
Resumo:
Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction.
Resumo:
Airway epithelial cells act as the first barrier against pathogens. These cells recognize conserved structural motifs expressed by microbial pathogens via Toll-like receptors (TLRs) expressed on the surface. In contrast to the level of expression in lymphoid cells, the level of expression of TLR2 and TLR4 in airway epithelial cells is low under physiological conditions. Here we explored whether Klebsiella pneumoniae upregulates the expression of TLRs in human airway epithelial cells. We found that the expression of TLR2 and TLR4 by A549 cells and human primary airway cells was upregulated upon infection with K. pneumoniae. The increased expression of TLRs resulted in enhancement of the cellular response upon stimulation with Pam3CSK4 and lipopolysaccharide, which are TLR2 and TLR4 agonists, respectively. Klebsiella-dependent upregulation of TLR expression occurred via a positive IkappaBalpha-dependent NF-kappaBeta pathway and via negative p38 and p44/42 mitogen-activated protein kinase-dependent pathways. We showed that Klebsiella-induced TLR2 and TLR4 upregulation was dependent on TLR activation. An isogenic capsule polysaccharide (CPS) mutant did not increase TLR2 and TLR4 expression. Purified CPS upregulated TLR2 and TLR4 expression, and polymyxin B did not abrogate CPS-induced TLR upregulation. Although no proteins were detected in the CPS preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and colloidal gold staining, we could not rule out the possibility that traces of protein in our CPS preparation could have been responsible, at least in part, for the TLR upregulation.
Resumo:
The means by which airway epithelial cells sense a bacterial infection and which intracellular signalling pathways are activated upon infection are poorly understood. A549 cells and human primary airway cells (NHBE) were used to investigate the response to infection with Klebsiella pneumoniae. Infection of A549 and NHBE with K. pneumoniae 52K10, a capsule polysaccharide (CPS) mutant, increased the surface levels of ICAM-1 and caused the release of IL-8. By contrast, the wild-type strain did not elicit these responses. Consistent with a functional role for these responses, there was a correlation between ICAM-1 levels and the number of adherent leukocytes on the epithelial cell surface. In addition, treatment of neutrophils with IL-8 enhanced their ability to kill K. pneumoniae. Strain 52K10 was internalized by A549 cells more efficiently than the wild-type, and when infections with 52K10 were performed in the presence of cytochalasin D the inflammatory response was abrogated. These findings suggest that cellular activation is mediated by bacterial internalization and that CPS prevents the activation through the blockage of bacterial adhesion and uptake. Collectively, the results indicate that bacterial internalization by airway epithelial cells could be the triggering signal for the activation of the innate immune system of the airway. Infection of A549 cells by 52K10 was shown to trigger the nuclear translocation of NF-kappaB. Evidence is presented showing that 52K10 activated IL-8 production through Toll-like receptor (TLR) 2 and TLR4 pathways and that A549 cells could use soluble CD14 as TLR co-receptor.