982 resultados para Drug-excipient interaction
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
Phthalocyanines have been used as systemic photosensitizers because of their high affinity towards tumour tissue, and the high rates of reactive oxygen species produced when they are irradiated during photodynamic therapy. However, the topical administration of these compounds is limited by their large size, poor hydrosolubility and ionic character. This study aimed to investigate the iontophoretic delivery of charged zinc phthalocyanine tetrasulfonic acid (ZnPcS(4)) from a hydrophilic gel to different skin layers by means of in-vitro and in-vivo studies. Six hours of passive administration was insufficient for ZnPcS(4) to cross the stratum corneum (SC) and to reach the epidermis and dermis. No positive effect was reached when anodal iontophoresis was performed, showing that the drug-electrode attraction effect was higher than the electro-osmosis contribution at a pH of 5.5. Cathodal iontophoresis, however, was able to transport significant amounts of the drug to the viable epidermis. In addition, the absence of NaCl in the formulation significantly increased (by five-fold) the amount of ZnPcS(4) that crossed the SC and accumulated in the epidermis and dermis. It was possible to visualize the drug accumulation in the follicle openings and in the epidermis, even after SC removal. In-vivo experiments in rat skin showed that these results were maintained in an in-vivo model, even with only 15 min of iontophoresis. In addition, confocal analysis of the treated skin showed a homogeneous distribution of ZnPcS(4) in the viable epidermis after this short period of cathodal iontophoresis. Anti-Cancer Drugs 22:783-793 (C) 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.
Resumo:
The present study aimed the preparation and characterization of ternary solid dispersions by direct spray drying of a liquid suspension containing curcumin, a solubility enhancer and a drying aid. The experiments followed a Box-Behnken design in order to evaluate the influence of temperature, ratio of curcumin: lipidic carrier, and the collodial silicon dioxide content on the characteristics of the microparticulated solid dispersions. The angle of repose, Hausner factor, Carr index, water activity, and solubility were used to characterize solid dispersions. The results show that water activity, Hausner factor, and Carr index varied in an acceptable range for pharmaceutical purposes. The condition that maximizes solubility was determined using an exploratory design based on a surface response analysis and allowed a 3200-fold increase in curcumin solubility. Ternary solid dispersion showed a 90% curcumin release after 10min during a dissolution test. The results show that the spray drying of a liquid feed is an attractive and promising alternative to obtain enhanced solubility drug ternary solid dispersions.
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both C. albicans and C. tropicalis, but phospholipase activity was noted only in C. albicans. In vitro resistance to antifungals was verified in both species, but C. tropicalis appears to be more resistant to the tested antifungals than C. albicans.
Resumo:
The objective of this investigation was to examine in a systematic manner the influence of plasma protein binding on in vivo pharmacodynamics. Comparative pharmacokinetic-pharmacodynamic studies with four beta blockers were performed in conscious rats, using heart rate under isoprenaline-induced tachycardia as a pharmacodynamic endpoint. A recently proposed mechanism-based agonist-antagonist interaction model was used to obtain in vivo estimates of receptor affinities (K(B),(vivo)). These values were compared with in vitro affinities (K(B),(vitro)) on the basis of both total and free drug concentrations. For the total drug concentrations, the K(B),(vivo) estimates were 26, 13, 6.5 and 0.89 nM for S(-)-atenolol, S(-)-propranolol, S(-)-metoprolol and timolol. The K(B),(vivo) estimates on the basis of the free concentrations were 25, 2.0, 5.2 and 0.56 nM, respectively. The K(B),(vivo)-K(B),(vitro) correlation for total drug concentrations clearly deviated from the line of identity, especially for the most highly bound drug S(-)-propranolol (ratio K(B),(vivo)/K(B),(vitro) similar to 6.8). For the free drug, the correlation approximated the line of identity. Using this model, for beta-blockers the free plasma concentration appears to be the best predictor of in vivo pharmacodynamics. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3816-3828, 2009
Resumo:
It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
The goal of this work was to study the liquid crystalline structure of a nanodispersion delivery system intended to be used in photodynamic therapy after loading with photosensitizers (PSs) and additives such as preservatives and thickening polymers. Polarized light microscopy and light scattering were performed on a standard nanodispersion in order to determine the anisotropy of the liquid crystalline structure and the mean diameter of the nanoparticles, respectively. Small angle X-ray diffraction (SAXRD) was used to verify the influence of drug loading and additives on the liquid crystalline structure of the nanodispersions. The samples, before and after the addition of PSs and additives, were stable over 90 days, as verified by dynamic light scattering. SAXRD revealed that despite the alteration observed in some of the samples analyzed in the presence of photosensitizing drugs and additives, the hexagonal phase still remained in the crystalline phase. (C) 2011 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100: 2849-2857, 2011
Resumo:
This work evaluated the Modulation of reactive oxygen species (ROS) produced by the cisplatin-human DNA interaction in a cell-free experimental model by the carotenoids bixin and lycopene extracted from, natural dietary Sources and purified through luminol- and Cypridina luciferin methoxy-analogue (MCLA)- enhanced chemiluminescence assays. The results showed that the ROS generation by DNA-cisplatin interaction was inhibited by both lycopene and bixin in a concentration-dependent manner. At a concentration of 100 mu M, lycopene and bixin inhibited Superoxide anion (O center dot(2)) generation at 90% and 82%, respectively, and the total ROS generation at 44% and 42%, respectively. The formation of significant amounts of isomers or degradation products of both carotenoids was not observed after ROS scavenging, as evaluated by high-performance liquid chromatography. Taken together, these results Suggest that carotenoids can be helpful to Modulate the oxidative stress found in cancer therapy with cisplatin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In mapping the evolutionary process of online news and the socio-cultural factors determining this development, this paper has a dual purpose. First, in reworking the definition of “online communication”, it argues that despite its seemingly sudden emergence in the 1990s, the history of online news started right in the early days of the telegraphs and spread throughout the development of the telephone and the fax machine before becoming computer-based in the 1980s and Web-based in the 1990s. Second, merging macro-perspectives on the dynamic of media evolution by DeFleur and Ball-Rokeach (1989) and Winston (1998), the paper consolidates a critical point for thinking about new media development: that something technically feasible does not always mean that it will be socially accepted and/or demanded. From a producer-centric perspective, the birth and development of pre-Web online news forms have been more or less generated by the traditional media’s sometimes excessive hype about the power of new technologies. However, placing such an emphasis on technological potentials at the expense of their social conditions not only can be misleading but also can be detrimental to the development of new media, including the potential of today’s online news.
Resumo:
While some recent frameworks on cognitive agents addressed the combination of mental attitudes with deontic concepts, they commonly ignore the representation of time. An exception is [1]that manages also some temporal aspects both with respect to cognition and normative provisions. We propose in this paper an extension of the logic presented in [1]with temporal intervals.