847 resultados para Distributed embedded systems
Resumo:
The paper is concerned with the uniformization of a system of affine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). We present and implement an automatic system to achieve uniformization of systems of affine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. This work proposes a fully decentralised algorithm (Epidemic K-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art distributed K-Means algorithms based on sampling methods. The experimental analysis confirms that the proposed algorithm is a practical and accurate distributed K-Means implementation for networked systems of very large and extreme scale.
Resumo:
The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.
Resumo:
Embedded computer systems equipped with wireless communication transceivers are nowadays used in a vast number of application scenarios. Energy consumption is important in many of these scenarios, as systems are battery operated and long maintenance-free operation is required. To achieve this goal, embedded systems employ low-power communication transceivers and protocols. However, currently used protocols cannot operate efficiently when communication channels are highly erroneous. In this study, we show how average diversity combining (ADC) can be used in state-of-the-art low-power communication protocols. This novel approach improves transmission reliability and in consequence energy consumption and transmission latency in the presence of erroneous channels. Using a testbed, we show that highly erroneous channels are indeed a common occurrence in situations, where low-power systems are used and we demonstrate that ADC improves low-power communication dramatically.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.
Resumo:
Epidemic protocols are a bio-inspired communication and computation paradigm for extreme-scale network system based on randomized communication. The protocols rely on a membership service to build decentralized and random overlay topologies. In a weakly connected overlay topology, a naive mechanism of membership protocols can break the connectivity, thus impairing the accuracy of the application. This work investigates the factors in membership protocols that cause the loss of global connectivity and introduces the first topology connectivity recovery mechanism. The mechanism is integrated into the Expander Membership Protocol, which is then evaluated against other membership protocols. The analysis shows that the proposed connectivity recovery mechanism is effective in preserving topology connectivity and also helps to improve the application performance in terms of convergence speed.
Resumo:
Att kunna gör en effektiv undersökning av det flyktiga minnet är något som blir viktigare ochviktigare i IT-forensiska utredningar. Dels under Linux och Windows baserade PC installationermen också för mobila enheter i form av Android och enheter baserade andra mobila opperativsy-stem.Android använder sig av en modifierad Linux-kärna var modifikationer är för att anpassa kärnantill de speciella krav som gäller för ett mobilt operativsystem. Dessa modifikationer innefattardels meddelandehantering mellan processer men även ändringar till hur internminnet hanteras ochövervakas.Då dessa två kärnor är så pass nära besläktade kan samma grundläggande principer användas föratt dumpa och undersöka minne. Dumpningen sker via en kärn-modul vilket i den här rapportenutgörs av en programvara vid namn LiME vilken kan hantera bägge kärnorna.Analys av minnet kräver att verktygen som används har en förståelse för minneslayouten i fråga.Beroende på vilken metod verktyget använder så kan det även behövas information om olika sym-boler. Verktyget som används i det här examensarbetet heter Volatility och klarar på papperet avatt extrahera all den information som behövs för att kunna göra en korrekt undersökning.Arbetet avsåg att vidareutveckla existerande metoder för analys av det flyktiga minnet på Linux-baserade maskiner (PC) och inbyggda system(Android). Problem uppstod då undersökning avflyktigt minne på Android och satta mål kunde inte uppnås fullt ut. Det visade sig att minnesanalysriktat emot PC-plattformen är både enklare och smidigare än vad det är mot Android.
Resumo:
A modelagem e desenvolvimento de sistemas embarcados ("embedded systems") de forma distribuída, tende a ser uma tarefa extremamente complexa, especialmente quando envolve sistemas heterogêneos e sincronização de tarefas. Com a utilização do modelo de componentes de software é possível descrever, de uma forma simplificada, todos os elementos de distribuição e de comunicação para este tipo de sistemas. Neste sentido, a especificação de uma ferramenta capaz de auxiliar na modelagem e no desenvolvimento deste tipo de aplicação, certamente irá tornar o trabalho mais simples. Esta dissertação inicia por uma análise comparativa entre as tecnologias passíveis de serem utilizadas na definição de sistemas distribuídos heterogêneos, focando-se principalmente nas metodologias de modelagem, e nos mecanismos e middlewares de comunicação. Dos conceitos formados a partir desta análise é descrita uma ferramenta, baseada em componentes de software. A ferramenta é uma extensão do projeto SIMOO-RT, onde foram adicionados os conceitos de componente de software, biblioteca de componentes e diagrama de implantação. Além disso, foram realizadas modificações no sistema de geração de código, para dar suporte aos novos conceitos da ferramenta. A dissertação termina com a descrição de alguns estudos de caso utilizados para validar a ferramenta.
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks
Resumo:
In academia, it is common to create didactic processors, facing practical disciplines in the area of Hardware Computer and can be used as subjects in software platforms, operating systems and compilers. Often, these processors are described without ISA standard, which requires the creation of compilers and other basic software to provide the hardware / software interface and hinder their integration with other processors and devices. Using reconfigurable devices described in a HDL language allows the creation or modification of any microarchitecture component, leading to alteration of the functional units of data path processor as well as the state machine that implements the control unit even as new needs arise. In particular, processors RISP enable modification of machine instructions, allowing entering or modifying instructions, and may even adapt to a new architecture. This work, as the object of study addressing educational soft-core processors described in VHDL, from a proposed methodology and its application on two processors with different complexity levels, shows that it s possible to tailor processors for a standard ISA without causing an increase in the level hardware complexity, ie without significant increase in chip area, while its level of performance in the application execution remains unchanged or is enhanced. The implementations also allow us to say that besides being possible to replace the architecture of a processor without changing its organization, RISP processor can switch between different instruction sets, which can be expanded to toggle between different ISAs, allowing a single processor become adaptive hybrid architecture, which can be used in embedded systems and heterogeneous multiprocessor environments
Resumo:
The semiconductor technologies evolutions leads devices to be developed with higher processing capability. Thus, those components have been used widely in more fields. Many industrial environment such as: oils, mines, automotives and hospitals are frequently using those devices on theirs process. Those industries activities are direct related to environment and health safe. So, it is quite important that those systems have extra safe features yield more reliability, safe and availability. The reference model eOSI that will be presented by this work is aimed to allow the development of systems under a new view perspective which can improve and make simpler the choice of strategies for fault tolerant. As a way to validate the model na architecture FPGA-based was developed.
Resumo:
Embedded systems are widely spread nowadays. An example is the Digital Signal Processor (DSP), which is a high processing power device. This work s contribution consist of exposing DSP implementation of the system logic for detecting leaks in real time. Among the various methods of leak detection available today this work uses a technique based on the pipe pressure analysis and usesWavelet Transform and Neural Networks. In this context, the DSP, in addition to do the pressure signal digital processing, also communicates to a Global Positioning System (GPS), which helps in situating the leak, and to a SCADA, sharing information. To ensure robustness and reliability in communication between DSP and SCADA the Modbus protocol is used. As it is a real time application, special attention is given to the response time of each of the tasks performed by the DSP. Tests and leak simulations were performed using the structure of Laboratory of Evaluation of Measurement in Oil (LAMP), at Federal University of Rio Grande do Norte (UFRN)
Resumo:
This work proposes hardware architecture, VHDL described, developed to embedded Artificial Neural Network (ANN), Multilayer Perceptron (MLP). The present work idealizes that, in this architecture, ANN applications could easily embed several different topologies of MLP network industrial field. The MLP topology in which the architecture can be configured is defined by a simple and specifically data input (instructions) that determines the layers and Perceptron quantity of the network. In order to set several MLP topologies, many components (datapath) and a controller were developed to execute these instructions. Thus, an user defines a group of previously known instructions which determine ANN characteristics. The system will guarantee the MLP execution through the neural processors (Perceptrons), the components of datapath and the controller that were developed. In other way, the biases and the weights must be static, the ANN that will be embedded must had been trained previously, in off-line way. The knowledge of system internal characteristics and the VHDL language by the user are not needed. The reconfigurable FPGA device was used to implement, simulate and test all the system, allowing application in several real daily problems
Resumo:
Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®