861 resultados para Diagnostic imaging Digital techniques


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation develops the model of a prototype system for the digital lodgement of spatial data sets with statutory bodies responsible for the registration and approval of land related actions under the Torrens Title system. Spatial data pertain to the location of geographical entities together with their spatial dimensions and are classified as point, line, area or surface. This dissertation deals with a sub-set of spatial data, land boundary data that result from the activities performed by surveying and mapping organisations for the development of land parcels. The prototype system has been developed, utilising an event-driven paradigm for the user-interface, to exploit the potential of digital spatial data being generated from the utilisation of electronic techniques. The system provides for the creation of a digital model of the cadastral network and dependent data sets for an area of interest from hard copy records. This initial model is calibrated on registered control and updated by field survey to produce an amended model. The field-calibrated model then is electronically validated to ensure it complies with standards of format and content. The prototype system was designed specifically to create a database of land boundary data for subsequent retrieval by land professionals for surveying, mapping and related activities. Data extracted from this database are utilised for subsequent field survey operations without the need to create an initial digital model of an area of interest. Statistical reporting of differences resulting when subsequent initial and calibrated models are compared, replaces the traditional checking operations of spatial data performed by a land registry office. Digital lodgement of survey data is fundamental to the creation of the database of accurate land boundary data. This creation of the database is fundamental also to the efficient integration of accurate spatial data about land being generated by modem technology such as global positioning systems, and remote sensing and imaging, with land boundary information and other information held in Government databases. The prototype system developed provides for the delivery of accurate, digital land boundary data for the land registration process to ensure the continued maintenance of the integrity of the cadastre. Such data should meet also the more general and encompassing requirements of, and prove to be of tangible, longer term benefit to the developing, electronic land information industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wound healing involves a complex series of biochemical events and has traditionally been managed with 'low tech' dressings and bandages. The concept that diagnostic and theranostic sensors can complement wound management is rapidly growing in popularity as there is tremendous potential to apply this technology to both acute and chronic wounds. Benefits in sensing the wound environment include reduction of hospitalization time, prevention of amputations and better understanding of the processes which impair healing. This review discusses the state-of-the-art in detection of markers associated with wound healing and infection, utilizing devices imbedded within dressings or as point-of-care techniques to allow for continual or rapid wound assessment and monitoring. Approaches include using biological or chemical sensors of wound exudates and volatiles to directly or indirectly detect bacteria, monitor pH, temperature, oxygen and enzymes. Spectroscopic and imaging techniques are also reviewed as advanced wound monitoring techniques. The review concludes with a discussion of the limitations of and future directions for this field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The assessment of skin temperature (Tsk) in athletic therapy and sports medicine research is an extremely important physiological outcome measure.Various methodsof recording Tsk, including thermistors, thermocouples and thermocrons are currently being used for research purposes. These techniques are constrained by their wires limiting the freedom of the subject, slow response times, and/or sensors falling off. Furthermore, as these products typically are directly attached to the skin and cover the measurement site, their validity may be questionable.This manuscript addresses the use and potential benefits of using thermal imaging (TI) in sport medicine research.Non-contact infrared TI offers a quick, non-invasive, portable and athlete-friendly method of assessing Tsk. TI is a useful Tsk diagnostic tool that has potential to be an integral part of sport medicine research in the future. Furthermore, as the technique is non-contact it has several advantages over existing methods of recording skin temperature

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the field of rolling element bearing diagnostics, envelope analysis has gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of this technique has been extended to cases in which small speed fluctuations occur, maintaining high effectiveness and efficiency. In order to make this algorithm suitable to all industrial applications, the constraint on speed has to be removed completely. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This chapter presents a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic technique, which has been shown to diagnose and stratify the severity of diabetic neuropathy. Current morphometric techniques assess individual static images of the subbasal nerve plexus; this work explores the potential for non-invasive assessment of the wide-field morphology and dynamic changes of this plexus in vivo. Methods In this pilot study, laser scanning CCM was used to acquire maps (using a dynamic fixation target and semi-automated tiling software) of the central corneal sub-basal nerve plexus in 4 diabetic patients with and 6 without neuropathy and in 2 control subjects. Nerve migration was measured in an additional 7 diabetic patients with neuropathy, 4 without neuropathy and in 2 control subjects by repeating a modified version of the mapping procedure within 2-8 weeks, thus facilitating re-identification of distinctive nerve landmarks in the 2 montages. The rate of nerve movement was determined from these data and normalised to a weekly rate (µm/week), using customised software. Results Wide-field corneal nerve fibre length correlated significantly with the Neuropathy Disability Score (r = -0.58, p < 0.05), vibration perception (r = -0.66, p < 0.05) and peroneal conduction velocity (r = 0.67, p < 0.05). Central corneal nerve fibre length did not correlate with any of these measures of neuropathy (p > 0.05 for all). The rate of corneal nerve migration was 14.3 ± 1.1 µm/week in diabetic patients with neuropathy, 19.7 ± 13.3µm/week in diabetic patients without neuropathy, and 24.4 ± 9.8µm/week in control subjects; however, these differences were not significantly different (p = 0.543). Conclusions Our data demonstrate that it is possible to capture wide-field images of the corneal nerve plexus, and to quantify the rate of corneal nerve migration by repeating this procedure over a number of weeks. Further studies on larger sample sizes are required to determine the utility of this approach for the diagnosis and monitoring of diabetic neuropathy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Digital holography is the direct recording of holograms using a CCD camera and is an alternative to the use of a film or a plate. In this communication in-line digital holographic microscopy has been explored for its application in particle imaging in 3D. Holograms of particles of about 10 mu m size have been digitally reconstructed. Digital focusing was done to image the particles in different planes along the depth of focus. Digital holographic particle imaging results were compared with conventional optical microscope imaging. A methodology for dynamic analysis of microparticles in 3D using in-line digital holography has been proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Internal browning disorders, including brown fleck (BF), in potato (Solanum tuberosum) tubers greatly reduce tuber quality, but the causes are not well understood. This is due, in part, to the highly variable data provided by visual value-based rating systems. A digital imaging technique was developed to quantify accurately the incidence of internal browning in potato tubers. Images of tuber sections were scanned using a flatbed scanner and digitally enhanced to highlight tuber BF lesions, and the area of affected tissue calculated using pixel quantification software. Digital imaging allowed for the determination of previously unused indices of the incidence and severity of internal browning in potato tubers. Statistical analysis of the comparison between digitally derived and visual-rating BF data from a glasshouse experiment showed that digital data greatly improved the delineation of treatment effects. The F-test probability was further improved through square root or logarithmic data transformations of the digital data, but not of the visual-rating data. Data from a field experiment showed that the area of tuber affected by BF and the number of small BF lesions increased with time and with increase in tuber size. The results from this study indicate that digital imaging of internal browning disorders of potato tubers holds much promise in determining their causes that heretofore have proved elusive.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heart failure (HF) affects approximately 23 million individuals worldwide and this number is increasing, due to an aging and growing population. Early detection of HF is crucial in the management of this debilitating disease. Current diagnostic methods for HF rely heavily on clinical imaging techniques and blood analysis, which makes them less than ideal for population-based screening purposes. Studies focusing on developing novel biomarkers for HF have utilized various techniques and biological fluids, including urine and saliva. Promising results from these studies imply that these body fluids can be used in evaluating the clinical manifestation of HF and will one day be integrated into a clinical workflow and facilitate HF management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The methods for estimating patient exposure in x-ray imaging are based on the measurement of radiation incident on the patient. In digital imaging, the useful dose range of the detector is large and excessive doses may remain undetected. Therefore, real-time monitoring of radiation exposure is important. According to international recommendations, the measurement uncertainty should be lower than 7% (confidence level 95%). The kerma-area product (KAP) is a measurement quantity used for monitoring patient exposure to radiation. A field KAP meter is typically attached to an x-ray device, and it is important to recognize the effect of this measurement geometry on the response of the meter. In a tandem calibration method, introduced in this study, a field KAP meter is used in its clinical position and calibration is performed with a reference KAP meter. This method provides a practical way to calibrate field KAP meters. However, the reference KAP meters require comprehensive calibration. In the calibration laboratory it is recommended to use standard radiation qualities. These qualities do not entirely correspond to the large range of clinical radiation qualities. In this work, the energy dependence of the response of different KAP meter types was examined. According to our findings, the recommended accuracy in KAP measurements is difficult to achieve with conventional KAP meters because of their strong energy dependence. The energy dependence of the response of a novel large KAP meter was found out to be much lower than with a conventional KAP meter. The accuracy of the tandem method can be improved by using this meter type as a reference meter. A KAP meter cannot be used to determine the radiation exposure of patients in mammography, in which part of the radiation beam is always aimed directly at the detector without attenuation produced by the tissue. This work assessed whether pixel values from this detector area could be used to monitor the radiation beam incident on the patient. The results were congruent with the tube output calculation, which is the method generally used for this purpose. The recommended accuracy can be achieved with the studied method. New optimization of radiation qualities and dose level is needed when other detector types are introduced. In this work, the optimal selections were examined with one direct digital detector type. For this device, the use of radiation qualities with higher energies was recommended and appropriate image quality was achieved by increasing the low dose level of the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.