932 resultados para Designs Qualitative
Resumo:
Issue addressed: Previous research has shown that approximately 60% of nurses in Australia are overweight or obese, insufficiently active and have an unhealthy diet. The aim of this study was to gain an understanding of nurses’ determinants contributing to these behaviours. This will inform a needs assessment for a future workplace health promotion program (WHPP) in this group. Methods: Four focus group discussions (n = 17) were conducted with a convenience sample of nurses aged 25–59 years from three hospitals in the Brisbane metropolitan area. Questions addressed barriers and motivation towards diet and physical activity (PA), and suggestions for future WHPP. Data were analysed with Nvivo10 following a thematic analysis with a realistic approach using Self-determination theory as a framework. Results: Work environment was the main barrier for healthy diet behaviours. Long working hours and lack of breaks challenged nurses’ self-control and self-regulation when making dietary choices. Fatigue was the main barrier for PA. However, relaxation, feeling energised before work and better sleep after working night shifts motivated nurses to do PA. Social environment at work seemed to be an effective external motivation to encourage healthy diet and regular PA. Goal-setting, self-monitoring and social support at work were identified as potential WHHP strategies. Conclusion: The workplace and job demands negatively impacts nurses’ lifestyle behaviours. Future interventions should include social support from colleagues, which could motivate nurses to make healthier food choices at work and be more active outside work.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.
Resumo:
This doctoral dissertation takes a buy side perspective to third-party logistics (3PL) providers’ service tiering by applying a linear serial dyadic view to transactions. It takes its point of departure not only from the unalterable focus on the dyad levels as units of analysis and how to manage them, but also the characteristics both creating and determining purposeful conditions for a longer duration. A conceptual framework is proposed and evaluated on its ability to capture logistics service buyers’ perceptions of service tiering. The problem discussed is in the theoretical context of logistics and reflects value appropriation, power dependencies, visibility in linear serial dyads, a movement towards the more market governed modes of transactions (i.e. service tiering) and buyers’ risk perception of broader utilisation of the logistics services market. Service tiering, in a supply chain setting, with the lack of multilateral agreements between supply chain members, is new. The deductive research approach applied, in which theoretically based propositions are empirically tested with quantitative and qualitative data, provides new insight into (contractual) transactions in 3PL. The study findings imply that the understanding of power dependencies and supply chain dynamics in a 3PL context is still in its infancy. The issues found include separation of service responsibilities, supply chain visibility, price-making behaviour and supply chain strategies under changing circumstances or influence of non-immediate supply chain actors. Understanding (or failing to understand) these issues may mean remarkable implications for the industry. Thus, the contingencies may trigger more open-book policies, larger liability scope of 3PL service providers or insourcing of critical logistics activities from the first-tier buyer core business and customer service perspectives. In addition, a sufficient understanding of the issues surrounding service tiering enables proactive responses to devise appropriate supply chain strategies. The author concludes that qualitative research designs, facilitating data collection on multiple supply chain actors, may capture and increase understanding of the impact of broader supply chain strategies. This would enable pattern-matching through an examination of two or more sides of exchange transactions to measure relational symmetries across linear serial dyads. Indeed, the performance of the firm depends not only on how efficiently it cooperates with its partners, but also on how well exchange partners cooperate with an organisation’s own business.
Resumo:
For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.
Resumo:
Space-time block codes based on orthogonal designs are used for wireless communications with multiple transmit antennas which can achieve full transmit diversity and have low decoding complexity. However, the rate of the square real/complex orthogonal designs tends to zero with increase in number of antennas, while it is possible to have a rate-1 real orthogonal design (ROD) for any number of antennas.In case of complex orthogonal designs (CODs), rate-1 codes exist only for 1 and 2 antennas. In general, For a transmit antennas, the maximal rate of a COD is 1/2 + l/n or 1/2 + 1/n+1 for n even or odd respectively. In this paper, we present a simple construction for maximal-rate CODs for any number of antennas from square CODs which resembles the construction of rate-1 RODs from square RODs. These designs are shown to be amenable for construction of a class of generalized CODs (called Coordinate-Interleaved Scaled CODs) with low peak-to-average power ratio (PAPR) having the same parameters as the maximal-rate codes. Simulation results indicate that these codes perform better than the existing maximal rate codes under peak power constraint while performing the same under average power constraint.
Resumo:
A comprehensive analysis of thermal and photochemical reactions of thiocarbonyls has been undertaken within the PMO framework employing MINDO/3 orbital energies and wavefunctions. The model is generally successful in rationalizing the observed regiochemistry of such reactions. In particular, the indicated regiochemistry for [4 + 2] thermal cycloadditions of saturated thiones to 2-substituted dienes, for the dimerization of α,β-unsaturated thiones, and for the photochemical cycloadditions of thioketones and thioenones are all in agreement with experimental observations. Interesting predictions are also made concerning cycloadditions of saturated, conjugated, and arylalkyl thiones which have not yet been studied experimentally. The analysis reveals the decisive role played by secondary orbital interactions in determining the observed product selectivity in the photochemical reactions between thioenone and olefins.
Resumo:
Combat games are studied as bicriterion differential games with qualitative outcomes determined by threshold values on the criterion functions. Survival and capture strategies of the players are defined using the notion of security levels. Closest approach survival strategies (CASS) and minimum risk capture strategies (MRCS) are important strategies for the players identified as solutions to four optimization problems involving security levels. These are used, in combination with the preference orderings of the qualitative outcomes by the players, to delineate the win regions and the secured draw and mutual kill regions for the players. It is shown that the secured draw regions and the secured mutual kill regions for the two players are not necessarily the same. Simple illustrative examples are given.
Resumo:
The Master’s thesis is qualitative research based on interviews of 15 Chinese immigrants to Finland in order to provide a sociological perspective of the migration experience through the eyes of Chinese immigrants in the Finnish social welfare context. This research is mainly focused upon four crucial aspects of life in the settlement process: housing, employment, access to health care and child care. Inspired by Allardt’s theoretical framework ‘Having, Loving and Being’, social relationships and individual satisfaction are examined in the case of Chinese interviewees dealing with the four life aspects. Finland was not perceived as an attractive migration destination for most Chinese interviewees in the beginning. However, with longer residence in Finland, the Finnish social welfare system gradually became a crucial appealing factor in their permanent settlement in Finland. And meanwhile, social responsibility of attending their old parents in China, strong feelings of being isolated in Finland, and insufficient integration into the Finnish society were influential factors for their decision of returning to China. Social relationships with personal friends, migration brokers, schools, employers and family relatives had great influences in the four life aspects of Chinese immigrants in Finland. The social relationship with the Finnish social welfare sector is supportive to Chinese immigrants, but Chinese immigrants do not heavily rely on Finnish social protection. The housing conditions were greatly improved over time while the upward mobility in the Finnish labour market was not significant among Chinese immigrants. All Chinese immigrants were satisfied with their current housing by the time I interviewed them while most of them had subjective feelings of being alienated in the Finnish labour market, which seriously prevented them from integrating into the Finnish society. In general, Chinese immigrants were satisfied with the low cost of accessing the Finnish public health care services and affordable Finnish child day care services and financial subsidies for children from the Finnish social welfare sector. This research also suggests that employment is the central basis in well-being. Support from the Finnish social welfare sector can improve the satisfaction levels among immigrants, especially when it mitigates the effects of low-paid employment. As well, my empirical study of Chinese immigrants in Finland shows that Having (needs for materials), Loving (needs for social relations) and Being (needs for social integration) are all involved in the four concrete aspects (housing, employment, access to health care and child care).
Resumo:
Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.
Resumo:
We define lacunary Fourier series on a compact connected semisimple Lie group G. If f is an element of L-1 (G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.
Resumo:
A symmetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies the equation XA = A(t)X, where t indicates the transpose. A symmetrizer is useful in converting a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve and finds applications in stability problems in control theory and in the study of general matrices. Three designs based on VLSI parallel processor arrays are presented to compute a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted diagonal design are the derived versions of the first design with improved performance.