939 resultados para Defined Daily Dose
Resumo:
Background Despite recent evidence demonstrating that exercise neither increases risk of nor exacerbates lymphoedema, lymphoedema prevention and management advice cautions against ‘repetitive use’ or ‘overuse’ of the affected arm. It is plausible that this advice creates a barrier to participation in exercise and, more generally, physical activity (any daily activity [PA]). This study explored the relationship between lymphoedema and PA among people following cancer treatment. Methods Social constructionist grounded theory guided study design, development of interview questions and the qualitative data analysis approach undertaken. Data were collected via focus groups and telephone interviews. Results Five focus groups (n=16 participants) and 13 telephone interviews were completed. Participants (women n=26, men n=3) were aged 39-80 years and were experiencing mild to severe lymphoedema following treatment for a variety of cancers. Participants varied in how they defined PA. Its perceived importance was mostly associated with the ability to partake in daily activities, with only some participants highlighting its importance for lymphoedema management or more general health benefits. Most participants’ PA decreased after diagnosis, a consequence of confusion around appropriate PA and fear that PA could worsen lymphoedema symptoms. Conclusions Lymphoedema guidelines need to be more clear and specific when discussing the role of PA and exercise in the prevention and management of lymphoedema. It may be more appropriate to discuss ways to optimize safety when engaging in specific tasks rather than to highlight the need for avoidance of participating in certain activities.
Resumo:
Critically ill patients receiving extracorporeal membrane oxygenation (ECMO) are often noted to have increased sedation requirements. However, data related to sedation in this complex group of patients is limited. The aim of our study was to characterise the sedation requirements in adult patients receiving ECMO for cardiorespiratory failure. A retrospective chart review was performed to collect sedation data for 30 consecutive patients who received venovenous or venoarterial ECMO between April 2009 and March 2011. To test for a difference in doses over time we used a regression model. The dose of midazolam received on ECMO support increased by an average of 18 mg per day (95% confidence interval 8, 29 mg, P=0.001), while the dose of morphine increased by 29 mg per day (95% confidence interval 4, 53 mg, P=0.021) The venovenous group received a daily midazolam dose that was 157 mg higher than the venoarterial group (95% confidence interval 53, 261 mg, P=0.005). We did not observe any significant increase in fentanyl doses over time (95% confidence interval 1269, 4337 µg, P=0.94). There is a significant increase in dose requirement for morphine and midazolam during ECMO. Patients on venovenous ECMO received higher sedative doses as compared to patients on venoarterial ECMO. Future research should focus on mechanisms behind these changes and also identify drugs that are most suitable for sedation during ECMO.
Resumo:
This paper describes the use of property graphs for mapping data between AEC software tools, which are not linked by common data formats and/or other interoperability measures. The intention of introducing this in practice, education and research is to facilitate the use of diverse, non-integrated design and analysis applications by a variety of users who need to create customised digital workflows, including those who are not expert programmers. Data model types are examined by way of supporting the choice of directed, attributed, multi-relational graphs for such data transformation tasks. A brief exemplar design scenario is also presented to illustrate the concepts and methods proposed, and conclusions are drawn regarding the feasibility of this approach and directions for further research.
Resumo:
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.
Resumo:
Objective: To establish risk factors for moderate and severe microbial keratitis among daily contact lens (CL) wearers in Australia. Design: A prospective, 12-month, population-based, case-control study. Participants: New cases of moderate and severe microbial keratitis in daily wear CL users presenting in Australia over a 12-month period were identified through surveillance of all ophthalmic practitioners. Case detection was augmented by record audits at major ophthalmic centers. Controls were users of daily wear CLs in the community identified using a national telephone survey. Testing: Cases and controls were interviewed by telephone to determine subject demographics and CL wear history. Multiple binary logistic regression was used to determine independent risk factors and univariate population attributable risk percentage (PAR%) was estimated for each risk factor.; Main Outcome Measures: Independent risk factors, relative risk (with 95% confidence intervals [CIs]), and PAR%. Results: There were 90 eligible moderate and severe cases related to daily wear of CLs reported during the study period. We identified 1090 community controls using daily wear CLs. Independent risk factors for moderate and severe keratitis while adjusting for age, gender, and lens material type included poor storage case hygiene 6.4× (95% CI, 1.9-21.8; PAR, 49%), infrequent storage case replacement 5.4× (95% CI, 1.5-18.9; PAR, 27%), solution type 7.2× (95% CI, 2.3-22.5; PAR, 35%), occasional overnight lens use (<1 night per week) 6.5× (95% CI, 1.3-31.7; PAR, 23%), high socioeconomic status 4.1× (95% CI, 1.2-14.4; PAR, 31%), and smoking 3.7× (95% CI, 1.1-12.8; PAR, 31%). Conclusions: Moderate and severe microbial keratitis associated with daily use of CLs was independently associated with factors likely to cause contamination of CL storage cases (frequency of storage case replacement, hygiene, and solution type). Other factors included occasional overnight use of CLs, smoking, and socioeconomic class. Disease load may be considerably reduced by attention to modifiable risk factors related to CL storage case practice.
Resumo:
Background: There are strong logical reasons why energy expended in metabolism should influence the energy acquired in food-intake behavior. However, the relation has never been established, and it is not known why certain people experience hunger in the presence of large amounts of body energy. Objective: We investigated the effect of the resting metabolic rate (RMR) on objective measures of whole-day food intake and hunger. Design: We carried out a 12-wk intervention that involved 41 overweight and obese men and women [mean ± SD age: 43.1 ± 7.5 y; BMI (in kg/m2): 30.7 ± 3.9] who were tested under conditions of physical activity (sedentary or active) and dietary energy density (17 or 10 kJ/g). RMR, daily energy intake, meal size, and hunger were assessed within the same day and across each condition. Results: We obtained evidence that RMR is correlated with meal size and daily energy intake in overweight and obese individuals. Participants with high RMRs showed increased levels of hunger across the day (P < 0.0001) and greater food intake (P < 0.00001) than did individuals with lower RMRs. These effects were independent of sex and food energy density. The change in RMR was also related to energy intake (P < 0.0001). Conclusions: We propose that RMR (largely determined by fat-free mass) may be a marker of energy intake and could represent a physiologic signal for hunger. These results may have implications for additional research possibilities in appetite, energy homeostasis, and obesity. This trial was registered under international standard identification for controlled trials as ISRCTN47291569.
Resumo:
This study assessed the workday step counts of lower active (<10,000 daily steps) university employees using an automated, web-based walking intervention (Walk@Work). METHODS: Academic and administrative staff (n=390; 45.6±10.8years; BMI 27.2±5.5kg/m2; 290 women) at five campuses (Australia [x2], Canada, Northern Ireland and the United States), were given a pedometer, access to the website program (2010-11) and tasked with increasing workday walking by 1000 daily steps above baseline, every two weeks, over a six week period. Step count changes at four weeks post intervention were evaluated relative to campus and baseline walking. RESULTS: Across the sample, step counts significantly increased from baseline to post-intervention (1477 daily steps; p=0.001). Variations in increases were evident between campuses (largest difference of 870 daily steps; p=0.04) and for baseline activity status. Those least active at baseline (<5000 daily steps; n=125) increased step counts the most (1837 daily steps; p=0.001), whereas those most active (7500-9999 daily steps; n=79) increased the least (929 daily steps; p=0.001). CONCLUSIONS: Walk@Work increased workday walking by 25% in this sample overall. Increases occurred through an automated program, at campuses in different countries, and were most evident for those most in need of intervention.
Resumo:
Background: Decreased ability to perform Activities of Daily Living (ADLs) during hospitalisation has negative consequences for patients and health service delivery. Objective: To develop an Index to stratify patients at lower and higher risk of a significant decline in ability to perform ADLs at discharge. Design: Prospective two cohort study comprising a derivation (n=389; mean age 82.3 years; SD� 7.1) and a validation cohort (n=153; mean age 81.5 years; SD� 6.1). Patients and setting: General medical patients aged = 70 years admitted to three university-affiliated acute care hospitals in Brisbane, Australia. Measurement and main results: The short ADL Scale was used to identify a significant decline in ability to perform ADLs from premorbid to discharge. In the derivation cohort, 77 patients (19.8%) experienced a significant decline. Four significant factors were identified for patients independent at baseline: 'requiring moderate assistance to being totally dependent on others with bathing'; 'difficulty understanding others (frequently or all the time)'; 'requiring moderate assistance to being totally dependent on others with performing housework'; a 'history of experiencing at least one fall in the previous 90 days prior to hospital admission' in addition to 'independent at baseline', which was protective against decline at discharge. 'Difficulty understanding others (frequently or all the time)' and 'requiring moderate assistance to being totally dependent on others with performing housework' were also predictors for patients dependent in ADLs at baseline. Sensitivity, specificity, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) of the DADLD dichotomised risk scores were: 83.1% (95% CI 72.8; 90.7); 60.5% (95% CI 54.8; 65.9); 34.2% (95% CI 27.5; 41.5); 93.5% (95% CI 89.2; 96.5). In the validation cohort, 47 patients (30.7%) experienced a significant decline. Sensitivity, specificity, PPV and NPV of the DADLD were: 78.7% (95% CI 64.3; 89.3); 69.8% (95% CI 60.1, 78.3); 53.6% (95% CI 41.2; 65.7); 88.1% (95% CI 79.2; 94.1). Conclusions: The DADLD Index is a useful tool for identifying patients at higher risk of decline in ability to perform ADLs at discharge.
Resumo:
Background Individual exposure to ultraviolet radiation (UVR) is challenging to measure, particularly for diseases with substantial latency periods between first exposure and diagnosis of outcome, such as cancer. To guide the choice of surrogates for long-term UVR exposure in epidemiologic studies, we assessed how well stable sun-related individual characteristics and environmental/meteorological factors predicted daily personal UVR exposure measurements. Methods We evaluated 123 United States Radiologic Technologists subjects who wore personal UVR dosimeters for 8 hours daily for up to 7 days (N = 837 days). Potential predictors of personal UVR derived from a self-administered questionnaire, and public databases that provided daily estimates of ambient UVR and weather conditions. Factors potentially related to personal UVR exposure were tested individually and in a model including all significant variables. Results The strongest predictors of daily personal UVR exposure in the full model were ambient UVR, latitude, daily rainfall, and skin reaction to prolonged sunlight (R2 = 0.30). In a model containing only environmental and meteorological variables, ambient UVR, latitude, and daily rainfall were the strongest predictors of daily personal UVR exposure (R2 = 0.25). Conclusions In the absence of feasible measures of individual longitudinal sun exposure history, stable personal characteristics, ambient UVR, and weather parameters may help estimate long-term personal UVR exposure.
Resumo:
The term ‘partnership’ is increasingly used by governments, industry, community organisations and schools in supporting their daily businesses. Similar to the terms ‘ICT’ and ‘learning’, ‘partnerships’ are now ubiquitous in policy discourse. Yet, the term remains ill-defined and ambiguous. This study reviews and reflects on a government led industry-school partnership initiative in the state of Queensland, Australia, to understand how the term is used in this initiative. Given the frequent use of Public Private Partnership (PPP) language, PPP was used as a framework to review this initiative. The methodology of this qualitative case study involved consultations with stakeholders and an analysis of Gateway schools documents, policy documents, and literature. The review suggests that despite the use of terminology akin to PPP projects in Gateway school and policy documents, the implicit suggestion that this initiative is a public-private partnership is untenable. The majority of principles shaping a PPP have not been considered to a significant extent in the Gateway project. Although the review recognises the legitimate and sincere purpose of the Gateway schools initiative, the adoption of a PPP framework during the design, monitoring, or evaluation stages could have strengthened the initiative in terms of outcomes, benefits, and sustainability.
Resumo:
The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.
Resumo:
The aim of this work is to develop software that is capable of back projecting primary fluence images obtained from EPID measurements through phantom and patient geometries in order to calculate 3D dose distributions. In the first instance, we aim to develop a tool for pretreatment verification in IMRT. In our approach, a Geant4 application is used to back project primary fluence values from each EPID pixel towards the source. Each beam is considered to be polyenergetic, with a spectrum obtained from Monte Carlo calculations for the LINAC in question. At each step of the ray tracing process, the energy differential fluence is corrected for attenuation and beam divergence. Subsequently, the TERMA is calculated and accumulated to an energy differential 3D TERMA distribution. This distribution is then convolved with monoenergetic point spread kernels, thus generating energy differential 3D dose distributions. The resulting dose distributions are accumulated to yield the total dose distribution, which can then be used for pre-treatment verification of IMRT plans. Preliminary results were obtained for a test EPID image comprised of 100 9 100 pixels of unity fluence. Back projection of this field into a 30 cm9 30 cm 9 30 cm water phantom was performed, with TERMA distributions obtained in approximately 10 min (running on a single core of a 3 GHz processor). Point spread kernels for monoenergetic photons in water were calculated using a separate Geant4 application. Following convolution and summation, the resulting 3D dose distribution produced familiar build-up and penumbral features. In order to validate the dose model we will use EPID images recorded without any attenuating material in the beam for a number of MLC defined square fields. The dose distributions in water will be calculated and compared to TPS predictions.
Resumo:
Dose kernels may be used to calculate dose distributions in radiotherapy (as described by Ahnesjo et al., 1999). Their calculation requires use of Monte Carlo methods, usually by forcing interactions to occur at a point. The Geant4 Monte Carlo toolkit provides a capability to force interactions to occur in a particular volume. We have modified this capability and created a Geant4 application to calculate dose kernels in cartesian, cylindrical, and spherical scoring systems. The simulation considers monoenergetic photons incident at the origin of a 3 m x 3 x 9 3 m water volume. Photons interact via compton, photo-electric, pair production, and rayleigh scattering. By default, Geant4 models photon interactions by sampling a physical interaction length (PIL) for each process. The process returning the smallest PIL is then considered to occur. In order to force the interaction to occur within a given length, L_FIL, we scale each PIL according to the formula: PIL_forced = L_FIL 9 (1 - exp(-PIL/PILo)) where PILo is a constant. This ensures that the process occurs within L_FIL, whilst correctly modelling the relative probability of each process. Dose kernels were produced for an incident photon energy of 0.1, 1.0, and 10.0 MeV. In order to benchmark the code, dose kernels were also calculated using the EGSnrc Edknrc user code. Identical scoring systems were used; namely, the collapsed cone approach of the Edknrc code. Relative dose difference images were then produced. Preliminary results demonstrate the ability of the Geant4 application to reproduce the shape of the dose kernels; median relative dose differences of 12.6, 5.75, and 12.6 % were found for an incident photon energy of 0.1, 1.0, and 10.0 MeV respectively.
Resumo:
An accurate evaluation of the airborne particle dose-response relationship requires detailed measurements of the actual particle concentration levels that people are exposed to, in every microenvironment in which they reside. The aim of this work was to perform an exposure assessment of children in relation to two different aerosol species: ultrafine particles (UFPs) and black carbon (BC). To this purpose, personal exposure measurements, in terms of UFP and BC concentrations, were performed on 103 children aged 8-11 years (10.1 ± 1.1 years) using hand-held particle counters and aethalometers. Simultaneously, a time-activity diary and a portable GPS were used to determine the children’s daily time-activity pattern and estimate their inhaled dose of UFPs and BC. The median concentration to which the study population was exposed was found to be comparable to the high levels typically detected in urban traffic microenvironments, in terms of both particle number (2.2×104 part. cm-3) and BC (3.8 μg m-3) concentrations. Daily inhaled doses were also found to be relatively high and were equal to 3.35×1011 part. day-1 and 3.92×101 μg day-1 for UFPs and BC, respectively. Cooking and using transportation were recognized as the main activities contributing to overall daily exposure, when normalized according to their corresponding time contribution for UFPs and BC, respectively. Therefore, UFPs and BC could represent tracers of children exposure to particulate pollution from indoor cooking activities and transportation microenvironments, respectively.
Resumo:
Introduction: The accurate identification of tissue electron densities is of great importance for Monte Carlo (MC) dose calculations. When converting patient CT data into a voxelised format suitable for MC simulations, however, it is common to simplify the assignment of electron densities so that the complex tissues existing in the human body are categorized into a few basic types. This study examines the effects that the assignment of tissue types and the calculation of densities can have on the results of MC simulations, for the particular case of a Siemen’s Sensation 4 CT scanner located in a radiotherapy centre where QA measurements are routinely made using 11 tissue types (plus air). Methods: DOSXYZnrc phantoms are generated from CT data, using the CTCREATE user code, with the relationship between Hounsfield units (HU) and density determined via linear interpolation between a series of specified points on the ‘CT-density ramp’ (see Figure 1(a)). Tissue types are assigned according to HU ranges. Each voxel in the DOSXYZnrc phantom therefore has an electron density (electrons/cm3) defined by the product of the mass density (from the HU conversion) and the intrinsic electron density (electrons /gram) (from the material assignment), in that voxel. In this study, we consider the problems of density conversion and material identification separately: the CT-density ramp is simplified by decreasing the number of points which define it from 12 down to 8, 3 and 2; and the material-type-assignment is varied by defining the materials which comprise our test phantom (a Supertech head) as two tissues and bone, two plastics and bone, water only and (as an extreme case) lead only. The effect of these parameters on radiological thickness maps derived from simulated portal images is investigated. Results & Discussion: Increasing the degree of simplification of the CT-density ramp results in an increasing effect on the resulting radiological thickness calculated for the Supertech head phantom. For instance, defining the CT-density ramp using 8 points, instead of 12, results in a maximum radiological thickness change of 0.2 cm, whereas defining the CT-density ramp using only 2 points results in a maximum radiological thickness change of 11.2 cm. Changing the definition of the materials comprising the phantom between water and plastic and tissue results in millimetre-scale changes to the resulting radiological thickness. When the entire phantom is defined as lead, this alteration changes the calculated radiological thickness by a maximum of 9.7 cm. Evidently, the simplification of the CT-density ramp has a greater effect on the resulting radiological thickness map than does the alteration of the assignment of tissue types. Conclusions: It is possible to alter the definitions of the tissue types comprising the phantom (or patient) without substantially altering the results of simulated portal images. However, these images are very sensitive to the accurate identification of the HU-density relationship. When converting data from a patient’s CT into a MC simulation phantom, therefore, all possible care should be taken to accurately reproduce the conversion between HU and mass density, for the specific CT scanner used. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital (RBWH), Brisbane, Australia. The authors are grateful to the staff of the RBWH, especially Darren Cassidy, for assistance in obtaining the phantom CT data used in this study. The authors also wish to thank Cathy Hargrave, of QUT, for assistance in formatting the CT data, using the Pinnacle TPS. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.