914 resultados para Cultured epithelial autografts
Resumo:
The concentrations of the general neuronal markers D2-protein (N-CAM), D3-protein and neuron specific enolase (NSE) in reaggregating cultures of fetal rat telencephalon cells were affected by the presence of 30 nM triiodothyronine in the defined culture medium. The extent of normal developmental changes were enhanced by triiodothyronine, as demonstrated by crossed immunoelectrophoresis. From 13 to 19 days in culture, the concentration of D2-protein decreased, and the concentrations of both D3-protein and NSE increased. Nerve growth factor (NGF) was without effect on the development of these general neuronal markers. However, as shown previously both triiodothyronine and NGF increased the activity of choline acetyltransferase, a marker for cholinergic neurons. The results suggest an enhanced overall differentiation of several types of telencephalon neurons in the presence of triiodothyronine, and a specific stimulation of cholinergic telencephalon neurons by NGF.
Resumo:
BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.
Resumo:
PURPOSE: Epithelial cell adhesion molecule (Ep-CAM) recently received increased attention not only as a prognostic factor in breast cancer but also as a potential target for immunotherapy. We examined Ep-CAM expression in 402 consecutive node-negative breast cancer patients with long-term follow-up not treated in the adjuvant setting. EXPERIMENTAL DESIGN: Ep-CAM expression was evaluated by immunostaining. Its prognostic effect was estimated relative to overexpression/amplification of HER-2, histologic grade, tumor size, age, and hormone receptor expression. RESULTS: Ep-CAM status was positive in 106 (26.4%) patients. In multivariate analysis, Ep-CAM status was associated with disease-free survival independent of age, pT stage, histologic grade, estrogen receptor (ER), progesterone receptor (PR), as well as HER2 status (P = 0.028; hazard ratio, 1.60; 95% confidence interval, 1.05-2.44). Recently, so-called triple-negative (HER-2, ER, and PR) breast cancer has received increased attention. We noticed a similar association of Ep-CAM with disease-free survival in the triple-negative group as for the entire cohort. CONCLUSION: In this study of untreated breast cancer patients, Ep-CAM overexpression was associated with poor survival in the entire cohort and in the subgroup of triple-negative breast cancer. This suggests that Ep-CAM may be a well-suited target for specific therapies particularly in HER-2-, ER-, and PR-negative tumors.
Resumo:
The production of extracellular soluble proteins was studied in serum-free aggregating cell cultures of fetal rat telencephalon labeled on culture day 7 with a mixture of radioactive amino acid precursors. Cultures treated continuously with epidermal growth factor (EGF; 20 ng/ml) showed a generally increased protein secretion and a particularly enhanced production of a few distinct extracellular proteins. The time lag of this response after an initial dose of EGF (25 ng/ml) on day 7 was 48 h. The total macromolecular radioactivity that accumulated within 96 h of labeling in the media of EGF-treated cultures was 175% of untreated controls, whereas no difference was found in the proportions of intracellular amino acid incorporation. Cultures which received a single dose of EGF (25 ng/ml) on day 1 showed still a greatly increased protein secretion on day 7. Prevention of extracellular protein accumulation by reducing the initial cell number and increasing the rate of media changes did not affect the EGF-induced stimulation of the two glial enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase. The results suggest that both the increased production of extracellular proteins and the enhanced development of glial enzymatic activities reflect the stimulated phenotypic expression of EGF-sensitive brain cells.
Resumo:
With no less than 15,000 estimated new cases diagnosed per year, non melanomatous carcinomas are the commonest cutaneous cancers in the Swiss population. About 1 in 3 new cancer case is a basal (BCC) or a squamous cell carcinoma (SCC). Incidence rates are steadily increasing, faster for BCC than SCC. Rates are higher for men than women and increase exponentially with age. Systematic population-based registration of non melanomatous skin cancers faces many challenges that few cancer registries can meet. Rates of these cancers in Switzerland are among the highest in Europe. Primary and secondary nationwide prevention campaigns have been carried out for nearly 20 years with a focus on the deadliest cutaneous cancer: melanoma. However, detection of non melanomatous skin cancers benefits from these campaigns since prevention messages and means of early detection are similar for melanomas and other skin cancers.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
Aquaglyceroporin-9 (AQP9) facilitates diffusion of water and energy substrates such as glycerol and monocarboxylates. AQP9 is present in plasma membrane and mitochondria of astrocytes and catecholaminergic neurons, suggesting that it plays a role in the energetic status of these cells. Using specific small interference RNA directed against AQP9 in astrocyte cultures, we showed that glycerol uptake is decreased which is associated with an increase in glucose uptake and oxidative metabolism. Our results not only confirm the presence of AQP9 in astrocytes but also suggest that changes in AQP9 expression alter glial energy metabolism.
Resumo:
Intraoperative examination of sentinel axillary lymph nodes can be done by imprint cytology, frozen section, or, most recently, by PCR-based amplification of a cytokeratin signal. Using this technique, benign epithelial inclusions, representing mammary tissue displaced along the milk line, will likely generate a positive PCR signal and lead to a false-positive diagnosis of metastatic disease. To better appreciate the incidence of ectopic epithelial inclusions in axillary lymph nodes, we have performed an autopsy study, examining on 100 μm step sections 3,904 lymph nodes obtained from 160 axillary dissections in 80 patients. The median number of lymph nodes per axilla was 23 (15, 6, and 1 in levels 1, 2, and 3, respectively). A total of 30,450 hematoxylin-eosin stained slides were examined, as well as 8,825 slides immunostained with pan-cytokeratin antibodies. Despite this meticulous work-up, not a single epithelial inclusion was found in this study, suggesting that the incidence of such inclusions is much lower than the assumed 5% reported in the literature.
Resumo:
The pro-inflammatory cytokine TNF-α and the female hormone estrogen have been implicated in the pathophysiology of two common gynecological diseases, endometriosis and endometrial adenocarcinoma. Here we describe a novel capacity of TNF-α to activate ER signaling in endometrial epithelial cells. TNF-α induced luciferase expression in the absence and presence of estradiol and also augmented expression of the estrogen-regulated genes c-fos, GREB1, and progesterone receptor. Furthermore, TNF-α mediated ER transcriptional activity is dependent on the Extracellular Regulated Kinase (ERK) 1/2 pathway. Co-treatment with a pure ER antagonist resulted in an inhibition of this TNF-α-induced ERE luciferase activity and gene expression, demonstrating that this cytokine signals through ERs. Additional investigations confirmed that TNF-α acts specifically via ERα. Taken together, these data provide a rationale for the potential use of inhibitors of TNF-α and estrogen production/activity in combination for the treatment of endometrial pathologies.
Resumo:
Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.
Resumo:
Members of the ENaC/degenerin family of ion channels include the epithelial sodium channel (ENaC), acid-sensing ion channels (ASICs) and the nematode Caenorhabditis elegans degenerins. These channels are activated by a variety of stimuli such as ligands (ASICs) and mechanical forces (degenerins), or otherwise are constitutively active (ENaC). Despite their functional heterogeneity, these channels might share common basic mechanisms for gating. Mutations of a conserved residue in the extracellular loop, namely the 'degenerin site' activate all members of the ENaC/degenerin family. Chemical modification of a cysteine introduced in the degenerin site of rat ENaC (betaS518C) by the sulfhydryl reagents MTSET or MTSEA, results in a approximately 3-fold increase in the open probability. This effect is due to an 8-fold shortening of channel closed times and an increase in the number of long openings. In contrast to the intracellular gating domain in the N-terminus which is critical for channel opening, the intact extracellular degenerin site is necessary for normal channel closing, as illustrated by our observation that modification of betaS518C destabilises the channel closed state. The modification by the sulfhydryl reagents is state- and size-dependent consistent with a conformational change of the degenerin site during channel opening and closing. We propose that the intracellular and extracellular modulatory sites act on a common channel gate and control the activity of ENaC at the cell surface.
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
Macrophages play a critical role in intestinal wound repair. However, the mechanisms of macrophage-assisted wound repair remain poorly understood. We aimed to characterize more clearly the repair activities of murine and human macrophages. Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of healthy donors (HD) or Crohn's disease (CD) patients or isolated from the intestinal mucosa of HD. In-vitro models were used to study the repair activities of macrophages. We found that murine and human macrophages were both able to promote epithelial repair in vitro. This function was mainly cell contact-independent and relied upon the production of soluble factors such as the hepatocyte growth factor (HGF). Indeed, HGF-silenced macrophages were less capable of promoting epithelial repair than control macrophages. Remarkably, macrophages from CD patients produced less HGF than their HD counterparts (HGF level: 84âeuro0/00±âeuro0/0027âeuro0/00pg/mg of protein and 45âeuro0/00±âeuro0/0034âeuro0/00pg/mg of protein, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·009) and were deficient in promoting epithelial repair (repairing activity: 90·1âeuro0/00±âeuro0/004·6 and 75·8âeuro0/00±âeuro0/008·3, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·0005). In conclusion, we provide evidence that macrophages act on wounded epithelial cells to promote epithelial repair through the secretion of HGF. The deficiency of CD macrophages to secrete HGF and to promote epithelial repair might contribute to the impaired intestinal mucosal healing in CD patients.