998 resultados para Coordination Mapping Recovering
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
The equine influenza (EI) outbreak presented many challenges that required high-level coordination and decision making, as well as the development of new approaches for satisfactory and consistent resolution. This paper outlines the elements of the national coordination arrangements, preparatory arrangements in place prior to the outbreak that facilitated national coordination, and some of the issues faced and resolved in the response.
Resumo:
Burnt area mapping in humid tropical insular Southeast Asia using medium resolution (250-500m) satellite imagery is characterized by persisting cloud cover, wide range of land cover types, vast amount of wetland areas and highly varying fire regimes. The objective of this study was to deepen understanding of three major aspects affecting the implementation and limits of medium resolution burnt area mapping in insular Southeast Asia: 1) fire-induced spectral changes, 2) most suitable multitemporal compositing methods and 3) burn scars patterns and size distribution. The results revealed a high variation in fire-induced spectral changes depending on the pre-fire greenness of burnt area. It was concluded that this variation needs to be taken into account in change detection based burnt area mapping algorithms in order to maximize the potential of medium resolution satellite data. Minimum near infrared (MODIS band 2, 0.86μm) compositing method was found to be the most suitable for burnt area mapping purposes using Moderate Resolution Imaging Spectroradiometer (MODIS) data. In general, medium resolution burnt area mapping was found to be usable in the wetlands of insular Southeast Asia, whereas in other areas the usability was seriously jeopardized by the small size of burn scars. The suitability of medium resolution data for burnt area mapping in wetlands is important since recently Southeast Asian wetlands have become a major point of interest in many fields of science due to yearly occurring wild fires that not only degrade these unique ecosystems but also create regional haze problem and release globally significant amounts of carbon into the atmosphere due to burning peat. Finally, super-resolution MODIS images were tested but the test failed to improve the detection of small scars. Therefore, super-resolution technique was not considered to be applicable to regional level burnt area mapping in insular Southeast Asia.
Resumo:
Genomic regions influencing resistance to powdery mildew [Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal] were detected in a doubled haploid (DH) barley (Hordeum vulgare L.) population derived from a cross between the breeding line ND24260 and cultivar Flagship when evaluated across four field environments in Australia and Uruguay. Significant quantitative trait loci (OIL) for resistance to B. graminis were detected on six of the seven chromosomes (1H, 2H, 3H, 4H, 5H, and 7H). A QTL with large effect donated by ND24260 mapped to the short arm of chromosome 1H (1 HS) conferring near immunity to B. graminis in Australia but was ineffective in Uruguay. Three OIL donated by Flagship contributed partial resistance to B. graminis and were detected in at least two environments. These OIL were mapped to chromosomes 3H, 4H, and 5H (5HS) accounting for up to 18.6, 3.4, and 8.8% phenotypic variation, respectively. The 5HS QTL contributed partial resistance to B. graminis in all field environments in both Australia and Uruguay and aligned with the genomic region of Rph20, a gene conferring adult plant resistance (APR) to leaf rust (Puccinia hordei Otth), which is found in some cultivars having Vada' or 'Emir' in their parentage. Selection for favorable marker haplotypes within the 3H, 4H, and 5H QTL regions can be performed even in the presence of single (major) gene resistance. Pyramiding such QTL may provide an effective and potentially durable form of resistance to B. graminis.
High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H
Resumo:
Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC7F3 nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
α-Cyanothioacetamide (CTAM) complexes of cuprous chloride CuCl–2CTAM and cuprous bromide CuBr–2CTAM have been prepared. The infrared spectra of CTAM and its complexes, and the laser Raman spectrum of CTAM have been recorded. Assignment of the frequencies of the ligand has been made on the basis of a normal coordinate analysis using the Urey-Bradley force field. The copper (I) complexes are inferred to have thiocarbonyl sulfur and amide nitrogen bonded CTAM as evidenced from infrared and electronic spectra.
Resumo:
Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal–stomatal traits, leaf internal anatomy, and physiological performance.• Methods: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Key results: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.
Resumo:
Key message “To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.” Abstract Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.
Resumo:
Key message We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Abstract Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.
Resumo:
Poultry are considered a major source for campylobacteriosis in humans. A total of 1866 Campylobacter spp. isolates collected through the poultry processing chain were typed using flaA-restriction fragment length polymorphism to measure the impact of processing on the genotypes present. Temporally related human clinical isolates (n = 497) were also typed. Isolates were obtained from whole chicken carcass rinses of chickens collected before scalding, after scalding, before immersion chilling, after immersion chilling and after packaging as well as from individual caecal samples. A total of 32 genotypes comprising at least four isolates each were recognised. Simpson's Index of Diversity (D) was calculated for each sampling site within each flock, for each flock as a whole and for the clinical isolates. From caecal collection to after packaging samples the D value did not change in two flocks, decreased in one flock and increased in the fourth flock. Dominant genotypes occurred in each flock but their constitutive percentages changed through processing. There were 23 overlapping genotypes between clinical and chicken isolates. The diversity of Campylobacter is flock dependant and may alter through processing. This study confirms that poultry are a source of campylobacteriosis in the Australian population although other sources may contribute.