890 resultados para Constrained interval arithmetic
Resumo:
Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best.
Resumo:
As áreas de visualização e modelagem baseados em pontos têm sido pesquisadas ativamente na computação gráfica. Pontos com atributos (por exemplo, normais) são geralmente chamados de surfels e existem vários algoritmos para a manipulação e visualização eficiente deles. Um ponto chave para a eficiência de muitos métodos é o uso de estruturas de particionamento do espaço. Geralmente octrees e KD-trees, por utilizarem cortes alinhados com os eixos são preferidas em vez das BSP-trees, mais genéricas. Neste trabalho, apresenta-se uma estrutura chamada Constrained BSP-tree (CBSP-tree), que pode ser vista como uma estrutura intermediárias entre KD-trees e BSP-trees. A CBSP-tree se caracteriza por permitir cortes arbitrários desde que seja satisfeito um critério de validade dos cortes. Esse critério pode ser redefinido de acordo com a aplicação. Isso permite uma aproximação melhor de regões curvas. Apresentam-se algoritmos para construir CBSP-trees, valendo-se da flexibilidade que a estrutura oferece, e para realizar operações booleanas usando uma nova classificação de interior/exterior.
Resumo:
We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.
Resumo:
Este trabalho teve como objetivo principal avaliar a importância da inclusão dos efeitos genético materno, comum de leitegada e de ambiente permanente no modelo de estimação de componentes de variância para a característica intervalo de parto em fêmeas suínas. Foram utilizados dados que consistiam de 1.013 observações de fêmeas Dalland (C-40), registradas em dois rebanhos. As estimativas dos componentes de variância foram realizadas pelo método da máxima verossimilhança restrita livre de derivadas. Foram testados oito modelos, que continham os efeitos fixos (grupos de contemporâneo e covariáveis) e os efeitos genético aditivo direto e residual, mas variavam quanto à inclusão dos efeitos aleatórios genético materno, ambiental comum de leitegada e ambiental permanente. O teste da razão de verossimilhança (LR) indicou a não necessidade da inclusão desses efeitos no modelo. No entanto observou-se que o efeito ambiental permanente causou mudança nas estimativas de herdabilidade, que variaram de 0,00 a 0,03. Conclui-se que os valores de herdabilidade obtidos indicam que esta característica não apresentaria ganho genético como resposta à seleção. O efeito ambiental comum de leitegada e o genético materno não apresentaram influência sobre esta característica. Já o ambiental permanente, mesmo sem ter sido significativo o seu efeito pelo LR, deve ser considerado nos modelos genéticos para essa característica, pois sua presença causou mudança nas estimativas da variância genética aditiva.
Resumo:
The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are completed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)