841 resultados para Cluster Beowulf
Resumo:
It has been shown that a femtosecond plasma of cluster targets is an almost isotropic source of fast ions and, hence, can be used to obtain ionographic images with a wide field of view. The spatial resolution of the resulting ionographic images is no worse than 600 nm, which corresponds to a uniquely high value of about 105 of the ratio of the field of view to the resolution. The use of 100–300-keV ion fluxes ensures the sensitivity of the method to the sample thickness of no worse than 100 nm even for samples consisting of light chemical elements (C, H). The proposed method can be used to obtain images of low-contrast biological objects, thin films, membranes, and other nanostructured objects.
Resumo:
T cell immune responses to central nervous system-derived and other self-antigens are commonly described in both healthy and autoimmune individuals. However, in the case of the human prion protein (PrP), it has been argued that immunologic tolerance is uncommonly robust. Although development of an effective vaccine for prion disease requires breaking of tolerance to PrP, the extent of immune tolerance to PrP and the identity of immunodominant regions of the protein have not previously been determined in humans. We analyzed PrP T cell epitopes both by using a predictive algorithm and by measuring functional immune responses from healthy donors. Interestingly, clusters of epitopes were focused around the area of the polymorphic residue 129, previously identified as an indicator of susceptibility to prion disease, and in the C-terminal region. Moreover, responses were seen to PrP peptide 121-134 containing methionine at position 129, whereas PrP 121-134 [129V] was not immunogenic. The residue 129 polymorphism was also associated with distinct patterns of cytokine response: PrP 128-141 [129M] inducing IL-4 and IL-6 production, which was not seen in response to PrP 128-141 [129V]. Our data suggest that the immunogenic regions of human PrP lie between residue 107 and the C-terminus and that, like with many other central nervous system antigens, healthy individuals carry responses to PrP within the T cell repertoire and yet do not experience deleterious autoimmune reactions.
Resumo:
An intense isotropic source of multicharged carbon and oxygen ions with energy above 300 keV and particle number >108 per shot was obtained by femtosecond Ti:Sa laser irradiation of submicron clusters. The source was employed for high-contrast contact ionography images with 600 nm spatial resolution. A variation in object thickness of 100 nm was well resolved for both Zr and polymer foils.
Resumo:
Transcriptome analysis using microarray technology represents a powerful unbiased approach for delineating pathogenic mechanisms in disease. Here molecular mechanisms of renal tubulointerstitial fibrosis (TIF) were probed by monitoring changes in the renal transcriptome in a glomerular disease-dependent model of TIF ( adriamycin nephropathy) using Affymetrix (mu74av2) microarray coupled with sequential primary biological function-focused and secondary
Resumo:
A range of new alkylpyridinium and imidazolium carborane salts with [nido-C2B9H12](-), [closo-CB11H12](-), and [RC2B11H11](-) (R = methyl or butyl) anions have been prepared and characterized by physical and thermal methods, including the solid state structures of five of the salts determined by single crystal X-ray diffraction. The tendency of the salts to form low-melting ionic liquids has been assessed; all the salts studied with [nido-C2B9H12](-) anions melted below 100 degrees C and, significantly, have melting points that are 25-85 degrees C lower than those of the corresponding [closo-CB11H12](-) analogs, demonstrating that a wider range of boron-rich ionic liquid materials can be readily accessed.
Ionography of Submicron Foils and Nanostructures Using Ion Flow Generated in FS-Laser Cluster Plasma
Resumo:
A novel type of submicron ion radiography designed to image low-contrast objects, including nanofoils, membranes and biological structures, is proposed. It is based on femtosecond-laser-driven-cluster- plasma source of multicharged ions and polymer dosimeter film CR-39. The intense isotropic ion flow was produced by femtosecond Ti:Sa laser pulses with intensity similar to 4x10(17) W/cm(2) absorbed in the supersonic jet of the mixed He and CO2 gases. Two Focusing Spectrometers with Spatial Resolution (FSSR) were used to measure X-ray spectra of H-and He-like multicharged oxygen ions. The spectra testify that ions with energy more than 300 keV were radiated in different directions from the plasma source. High contrast ion radiography images were obtained for 2000 dpi metal mesh, 1 mu m polypropylene and 100 nm Zr foils as well as for the different biological objects. Images were recorded on a 1 mm thick CR-39 detector, placed in contact with back surface of the imaged samples at the distances 140 -160 mm from the ion source. The spatial resolution of the image no worse than 600 nm was provided. A difference in object thickness of 100 nm was very well resolved for both Zr and polymer foils. The ion radiography images recorded at different angles from the source, demonstrated almost uniform spatial distribution of ion with total number of 10(8) per shot. (C) 2009 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim
Resumo:
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Resumo:
Objective: To test the effectiveness of a complex intervention designed, within a theoretical framework, to improve outcomes for patients with coronary heart disease. Design: Cluster randomised controlled multicentre trial. Setting: General practices in Northern Ireland and the Republic of Ireland, regions with different healthcare systems. Participants: 903 patients with established coronary heart disease registered with one of 48 practices. Intervention: Tailored care plans for practices (practice based training in prescribing and behaviour change, administrative support, quarterly newsletter), and tailored care plans for patients (motivational interviewing, goal identification, and target setting for lifestyle change) with reviews every four months at the practices. Control practices provided usual care. Main outcome measures: The proportion of patients at 18 month follow-up above target levels for blood pressure and total cholesterol concentration, and those admitted to hospital, and changes in physical and mental health status (SF-12). Results: At baseline the numbers (proportions) of patients above the recommended limits were: systolic blood pressure greater than 140 mm Hg (305/899; 33.9%, 95% confidence interval 30.8% to 33.9%), diastolic blood pressure greater than 90 mm Hg (111/901; 12.3%, 10.2% to 14.5%), and total cholesterol concentration greater than 5 mmol/l (188/860; 20.8%, 19.1% to 24.6%). At the 18 month follow-up there were no significant differences between intervention and control groups in the numbers (proportions) of patients above the recommended limits: systolic blood pressure, intervention 98/360 (27.2%) v control, 133/405 (32.8%), odds ratio 1.51 (95% confidence interval 0.99 to 2.30; P=0.06); diastolic blood pressure, intervention 32/360 (8.9%) v control, 40/405 (9.9%), 1.40 (0.75 to 2.64; P=0.29); and total cholesterol concentration, intervention 52/342 (15.2%) v control, 64/391 (16.4%), 1.13 (0.63 to 2.03; P=0.65). The number of patients admitted to hospital over the 18 month study period significantly decreased in the intervention group compared with the control group: 107/415 (25.8%) v 148/435 (34.0%), 1.56 (1.53 to 2.60; P=0.03). Conclusions: Admissions to hospital were significantly reduced after an intensive 18 month intervention to improve outcomes for patients with coronary heart disease, but no other clinical benefits were shown, possibly because of a ceiling effect related to improved management of the disease. Trial registration: Current Controlled Trials ISRCTN24081411.
Resumo:
Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
Resumo:
The aim of this cluster randomised controlled trial was to test the impact of an infection control education and training programme on meticillin-resistant Staphylococcus aureus (MRSA) prevalence in nursing homes. Nursing homes were randomised to intervention (infection control education and training programme; N¼16) or control (usual practice continued; N¼16). Staff in intervention homes were educated and trained (0, 3 and 6 months) in the principles and implementation of good infection control practice with infection control audits conducted in all sites (0, 3, 6 and 12 months) to assess compliance with good practice. Audit scores were fed back to nursing home managers in intervention homes, together with a written report indicating where practice could be improved. Nasal swabs were taken from all consenting residents and staff at 0, 3, 6 and 12 months. The primary outcome was MRSA prevalence in residents and staff, and the secondary outcome was a change in infection control audit scores. In all, 793 residents and 338 staff were recruited at baseline. MRSA prevalence did not change during the study in residents or staff. The relative risk of a resident being colonised with MRSA in an intervention home compared with a control home at 12 months was 0.99 (95% con?dence interval: 0.69, 1.42) after adjustment for clustering. Mean infection control audit scores were signi?cantly higher in the intervention homes (82%) compared with the control homes (64%) at 12 months (P<0.0001). Consideration should be given to other approaches which may help to reduce MRSA in this setting.
Resumo:
The combination of different boron cluster anions and some of the cations typically found in the composition of ionic liquids has been possible by straightforward metathetic reactions, producing new low melting point salts; the imidazolium cations have been systematically studied, [C(n)mim](+) (when [C(n)mim](+) = 1-alkyl-3-methylimidazolium; n = 2, 4, 6, 8, 10, 12, 14, 16, or 18). Melting points increase in the anionic order [Co(C2B9H11)(2)](-) =-34 degrees C). The salts [C(n)mim](2)[X] ([X](2-) = [B10Cl10](2-) or [B12Cl12](2-), n = 16 or 18) show liquid crystal phases between the solid and liquid states. Tetraalkylphosphonium salts of [B10Cl10](2-) have also been prepared. Physical properties, such as thermal stability, density, or viscosity, have been measured for some selected samples. The presence of the perhalogenated dianion [B12Cl12](2-) in the composition of the imidazolium salts renders highly thermally stable compounds. For example, [C(2)mim](2)[B12Cl12] starts to decompose above 480 degrees C in a dynamic TGA analysis under a dinitrogen atmosphere. Crystal structures of [C(2)mim][Co(C2B9H11)(2)] and [C(2)mim](2)[B12Cl12] have been determined. H-1 NMR spectra of selected imidazolium-boron cluster anion salts have been recorded from solutions as a function of the concentration, showing trends related to the cation-anion interactions.