952 resultados para Chemical oxidation
Resumo:
A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.
Resumo:
The spontaneous oxidation of CO adsorbates on a Pt electrode modified by Ru under open circuit (OC) conditions in perchloric acid solution has been followed, for the first time, using in situ FTIR spectroscopy, and the dynamics of the surface processes taking place have been elucidated. The IR data show that adsorbed CO present on both the Ru and Pt domains and can be oxidized by the oxygen-containing adlayer on the Ru in a chemical process to produce CO under OC conditions. There is a free exchange of CO is between the Ru and Pt sites. Oxidation of CO may take place at the edges of the Ru islands, but CO is transfer, at least on the time scale of these experiments, allows the two different populations to maintain equilibrium. Oxidation is limited in this region by the rate of supply of oxygen to die surface of the catalyst. A mechanism is postulated to explain the observed behavior.
Resumo:
The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.
Resumo:
The electrochemical deposition of Ru on Pt(111) electrodes has been investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry in a closed UHV transfer system. At small coverages Ru formed a monatomic commensurate layer, at higher coverage mostly small islands with a bilayer height were detected. When the Pt was almost completely covered by Ru, three-dimensional clusters developed. The island structure of Ru changed upon electrooxidation of CO, reflecting an enhanced mobility of Ru. Adsorption and electrooxidation of CO have been studied on such Ru-modified Pt(111) electrodes using cyclic voltammetry and in situ FTIR spectroscopy. Compared to the pure metals, the Ru-CO bond is weakened, the Pt-CO bond strengthened on the modified electrodes. The catalytic activity of the Ru/Pt(111) electrode toward CO adlayer oxidation is higher than that of pure Ru and a PtRu alloy (50:50). It is concluded that the electrooxidation of CO takes place preferentially at the Ru islands, while CO adsorbed on Pt migrates to them. © 1999 American Chemical Society.
Resumo:
In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price.
Resumo:
Selective oxidation reactions are challenging when carried out on an industrial scale. Many traditional methods are undesirable from an environmental or safety point of view. There is a need to develop sustainable catalytic approaches that use molecular oxygen as the terminal oxidant. This review will discuss the use of stable radicals (primarily nitroxyl radicals) in aerobic oxidation catalysis. We will discuss the important advances that have occurred in recent years, highlighting the catalytic performance, mechanistic insights and the expanding synthetic utility of these catalytic systems.
Resumo:
In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.
Resumo:
To develop a chemical inhibitor that can efficiently suppress coal oxidation, nine tetraalkylphosphonium-based ionic liquids (ILs) and one imidazolium-based IL [1-allyl-3-methylimidazolium chloride ([AMIm]Cl)] were examined as additives. These ILs were used to treat and investigate the inhibitory effect on the oxidation activity and the structure of lignite coal. Characterization using thermogravimetric analysis showed that phosphonium-based ILs are able to inhibit coal oxidation up to 400 degrees C with the tributylethylphosphonium diethylphosphate ([P-4,P-4,P-4,P-2][DEP]) found to be the most effective. In contrast to the tetraalkylphosphonium-based ILs, inhibition using [AMIm]Cl was only found to be effective at temperatures below 250 degrees C, indicating that the tetraallcylphosphonium-based ILs may be more suitable for the future application of suppressing coal spontaneous combustion over a wide range of temperatures. Fourier transform infrared spectroscopic data showed that the various functional groups change in the coal following IL treatment, which are a decrease in the minerals and hydrogen bonds in all treated coals, while decreased aliphatic hydrocarbon and increased carbonyl bonds only appeared in some samples. During the oxidation of coal, the decomposition of aliphatic hydrocarbon groups is inhibited and the formation of carbonyl groups is delayed, so that the evolved gas concentration decreased, as shown by the temperature-programmed oxidation-mass spectrometry results. The deployment of the [P-4,P-4,P-4,P-2][ DEP] and tributylmethylphosphonium methylsulfate Its as additives also show good inhibitory effect on coal oxidation over the temperature range studied, and a relatively stronger interaction between [P-4,P-4,P-4,P-2] [DEP] and coal is demonstrated by the additive model.
Resumo:
A mutant strain (UV4) of the soil bacterium Pseudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene 12 dagger and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase HPLC, NMR and CD spectroscopy, and stereochemical correlation. X-Ray crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-MTPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.
Resumo:
Highly efficient In2O3-Co3O4 catalysts were prepared for ultralow-temperature CO oxidation by simultaneously tuning the CO adsorption strength and oxygen activation over a Co3O4 surface, which could completely convert CO to CO2 at temperatures as low as -105 degrees C compared to -40 degrees C over pure Co3O4, with enhanced stability.
Resumo:
We have performed ab initio density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on Ru(0001). Several reaction pathways and transition states are identified. A much higher reaction barrier compared to that on Pt(111) is determined, confirming that the Ru is very inactive for CO oxidation under UHV conditions. The origin of the reaction barrier was analyzed. It is found that in the transition state the chemisorbed O atom sits in an unfavorable bonding site and a significant competition for bonding with the same substrate atoms occurs between the CO and the chemisorbed O, resulting in the high barrier. Ab initio molecular dynamics calculations show that the activation of the chemisorbed O atom from the initial hcp hollow site (the most stable site) to the bridge site is the crucial step for the reaction. The CO oxidation on Ru(0001) via the Eley-Rideal mechanism has also been investigated. A comparison with previous theoretical work has been made. (C) 2000 American Institute of Physics. [S0021-9606(00)31223-5].