934 resultados para Cell Signaling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transforming growth factor-β (TGFβ) and Wnt/wingless pathways play pivotal roles in tissue specification during development. Activation of Smads, the effectors of TGFβ superfamily signals, results in Smad translocation from the cytoplasm into the nucleus where they act as transcriptional comodulators to regulate target gene expression. Wnt/wingless signals are mediated by the DNA-binding HMG box transcription factors lymphoid enhancer binding factor 1/T cell-specific factor (LEF1/TCF) and their coactivator β-catenin. Herein, we show that Smad3 physically interacts with the HMG box domain of LEF1 and that TGFβ and Wnt pathways synergize to activate transcription of the Xenopus homeobox gene twin (Xtwn). Disruption of specific Smad and LEF1/TCF DNA-binding sites in the promoter abrogates synergistic activation of the promoter. Consistent with this observation, introduction of Smad sites into a TGFβ-insensitive LEF1/TCF target gene confers cooperative TGFβ and Wnt responsiveness to the promoter. Furthermore, we demonstrate that TGFβ-dependent activation of LEF1/TCF target genes can occur in the absence of β-catenin binding to LEF1/TCF and requires both Smad and LEF1/TCF DNA-binding sites in the Xtwn promoter. Thus, our results show that TGFβ and Wnt signaling pathways can independently or cooperatively regulate LEF1/TCF target genes and suggest a model for how these pathways can synergistically activate target genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this study was to determine whether β1-adrenergic receptor (AR) and β2-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac β2-AR can activate both Gs and Gi proteins, whereas cardiac β1-AR couples only to Gs. To avoid complicated crosstalk between β-AR subtypes, we expressed β1-AR or β2-AR individually in adult β1/β2-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of β1-AR, but not β2-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, β2-AR (but not β1-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting Gi, Gβγ, or phosphoinositide 3 kinase (PI3K) with pertussis toxin, βARK-ct (a peptide inhibitor of Gβγ), or LY294002, respectively. This indicates that β2-AR activates Akt via a Gi-Gβγ-PI3K pathway. More importantly, inhibition of the Gi-Gβγ-PI3K-Akt pathway converts β2-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, β2-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the Gi-Gβγ-PI3K-Akt signaling pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of the action of Numb on Notch signaling, we expressed these proteins in cultured Drosophila cells and used nuclear translocation of Suppressor of Hairless [Su(H)] as a reporter for Notch activity. We found that Numb interfered with the ability of Notch to cause nuclear translocation of Su(H); both the C-terminal half of the phosphotyrosine binding domain and the C terminus of Numb are required to inhibit Notch. Overexpression of Numb during wing development, which is sensitive to Notch dosage, revealed that Numb is also able to inhibit the Notch receptor in vivo. In the external sense organ lineage, the phosphotyrosine binding domain of Numb was found to be essential for the function but not for asymmetric localization of Numb. Our results suggest that Numb determines daughter cell fates in the external sense organ lineage by inhibiting Notch signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To isolate and characterize effector molecules of the transforming growth factor beta (TGFbeta) signaling pathway we have used a genetic approach involving the generation of stable recessive mutants, defective in their TGFbeta signaling, which can subsequently be functionally complemented to clone the affected genes. We have generated a cell line derived from a hypoxanthine-guanine phosphoribosyltransferase negative (HPRT-) HT1080 clone that contains the selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) linked to a TGFbeta-responsive promoter. This cell line proliferates or dies in the appropriate selection medium in response to TGFbeta. We have isolated three distinct TGFbeta-unresponsive mutants following chemical mutagenesis. Somatic cell hybrids between pairs of individual TGFbeta-unresponsive clones reveal that each is in a distinct complementation group. Each mutant clone retains all three TGFbeta receptors yet fails to induce a TGFbeta-inducible luciferase reporter construct or TGFbeta-mediated plasminogen activator inhibitor-1 (PAI-1) expression. Two of the three have an attenuated TGFbeta-induced fibronectin response, whereas in the other mutant the fibronectin response is intact. These TGFbeta-unresponsive cells should allow selection and identification of signaling molecules through functional complementation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The membrane association of endothelial nitric oxide synthase (eNOS) plays an important role in the biosynthesis of nitric oxide (NO) in vascular endothelium. Previously, we have shown that in cultured endothelial cells and in intact blood vessels, eNOS is found primarily in the perinuclear region of the cells and in discrete regions of the plasma membrane, suggesting trafficking of the protein from the Golgi to specialized plasma membrane structures. Here, we show that eNOS is found in Triton X-100-insoluble membranes prepared from cultured bovine aortic endothelial cells and colocalizes with caveolin, a coat protein of caveolae, in cultured bovine lung microvascular endothelial cells as determined by confocal microscopy. To examine if eNOS is indeed in caveolae, we purified luminal endothelial cell plasma membranes and their caveolae directly from intact, perfused rat lungs. eNOS is found in the luminal plasma membranes and is markedly enriched in the purified caveolae. Because palmitoylation of eNOS does not significantly influence its membrane association, we next examined whether this modification can affect eNOS targeting to caveolae. Wild-type eNOS, but not the palmitoylation mutant form of the enzyme, colocalizes with caveolin on the cell surface in transfected NIH 3T3 cells, demonstrating that palmitoylation of eNOS is necessary for its targeting into caveolae. These data suggest that the subcellular targeting of eNOS to caveolae can restrict NO signaling to specific targets within a limited microenvironment at the cell surface and may influence signal transduction through caveolae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

C factor, an intercellular signaling protein, is required for aggregation and sporulation of the social bacterium, Myxococcus xanthus. We report that C factor, which normally is associated with the cell surface, provides input to the Frz signal transduction cascade. Elements of this cascade have sequence homology to bacterial chemotaxis systems and are known to control the frequency of gliding reversal. Exposure of developing cells of a C-factor-less mutant (csgA) to purified C factor increases the ratio of methylated to nonmethylated FrzCD protein, the Frz homolog of the methyl-accepting chemotaxis proteins. Methylation depends on the cognate methyltransferase FrzF, and its extent increases with the concentration of C factor. C-factor-induced methylation also depends on the product of a gene, called class II, which is necessary in vivo for all known responses to C factor. A model for aggregation is proposed in which C factor stimulates the Frz cascade and thereby decreases cell reversals in a way that preferentially leads cells into an aggregate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanical signals are important influences on the development and morphology of higher plants. Using tobacco transformed with the Ca(2+)-sensitive luminescent protein aequorin, we recently reported the effects of mechanical signals of touch and wind on the luminescence and thus intracellular calcium of young seedlings. When mesophyll protoplasts are isolated from these transgenic tobacco plants and mechanically stimulated by swirling them in solution, cytoplasmic Ca2+ increases immediately and transiently up to 10 microM, and these transients are unaffected by an excess of EGTA in the medium. The size of the transient effect is related to the strength of swirling. Epidermal strips isolated from transgenic tobacco leaves and containing only viable guard cells and trichomes also respond to the strength of swirling in solution and can increase their cytoplasmic Ca2+ transiently up to 10 microM. Finally, the moss Physcomitrella patens containing recombinant aequorin exhibits transient increases in cytoplasmic Ca2+ up to 5 microM when swirled in solution. This effect is strongly inhibited by ruthenium red. Our data indicate that the effect of mechanical stimulation can be found in a number of different cell types and in a lower plant as well as tobacco and suggest that mechanoperception and the resulting increase in cytoplasmic Ca2+ may be widespread.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The immunophilins of the FK506-binding protein (FKBP) family are intracellular proteins that bind the immunosuppresants FK506 and rapamycin. In this study we show that HMC-1 mast cells sensitized with IgE release FKBP12 upon stimulation with anti-IgE. The release is rapid and not affected by actinomycin D or cycloheximide, suggesting that it is due to exocytosis from a storage compartment. FKBP12 from HMC-1 mast cells exhibits biological activity. When applied extracellularly to human neutrophils, it induces transient changes in the intracellular Ca2+ concentration ([Ca2+]i) due to Ca2+ release from intracellular stores. Inhibition of [Ca2+]i changes by ruthenium red and ryanodine indicates that ryanodine receptor/Ca2+ release channels are involved in FKBP12-induced Ca2+ signaling. Neutrophil activation by mast cell-derived FKBP12 is prevented by complexing FKBP12 with FK506 or rapamycin. These results demonstrate that extracellular FKBP12 functions as a cytokine in cell-to-cell communication. They further suggest a pathophysiological role for FKBP12 as a mediator in immediate or type I hypersensitivity and may have implications for novel therapeutic strategies in the treatment of allergic disorders with FK506 and rapamycin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The circulating blood exerts a force on the vascular endothelium, termed fluid shear stress (FSS), which directly impacts numerous vascular endothelial cell (VEC) functions. For example, high rates of linear and undisturbed (i.e. laminar) blood flow maintains a protective and quiescent VEC phenotype. Meanwhile, deviations in blood flow, which can occur at vascular branchpoints and large curvatures, create areas of low, and/or oscillatory FSS, and promote a pro-inflammatory, pro-thrombotic and hyperpermeable phenotype. Indeed, it is known that these areas are prone to the development of atherosclerotic lesions. Herein, we show that cyclic nucleotide phosphodiesterase (PDE) 4D (PDE4D) activity is increased by FSS in human arterial endothelial cells (HAECs) and that this activation regulates the activity of cAMP-effector protein, Exchange Protein-activated by cAMP-1 (EPAC1), in these cells. Importantly, we also show that these events directly and critically impact HAEC responses to FSS, especially when FSS levels are low. Both morphological events induced by FSS, as measured by changes in cell alignment and elongation in the direction of FSS, and the expression of critical FSS-regulated genes, including Krüppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS) and thrombomodlin (TM), are mediated by EPAC1/PDE4D signaling. At a mechanistic level, we show that EPAC1/PDE4D acts through the vascular endothelial-cadherin (VECAD)/ platelet-cell adhesion molecule-1 (PECAM1)/vascular endothelial growth factor receptor 2 (VEGFR2) mechanosensor to activate downstream signaling though Akt. Given the critical role of PDE4D in mediating these effects, we also investigated the impact of various patterns of FSS on the expression of individual PDE genes in HAECs. Notably, PDE2A was significantly upregulated in response to high, laminar FSS, while PDE3A was upregulated under low, oscillatory FSS conditions only. These data may provide novel therapeutic targets to limit FSS-dependent endothelial cell dysfunction (ECD) and atherosclerotic development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classical cadherin adhesion molecules are fundamental determinants of tissue organization in both health and disease. Recent advances in understanding the molecular and cellular basis of cadherin function have revealed that these adhesion molecules serve as molecular couplers, linking cell surface adhesion and recognition to both the actin cytoskeleton and cell signalling pathways. We will review some of these developments. to provide an overview of progress in this rapidly-developing area of cell and developmental biology.