999 resultados para Calculated from stable oxygen isotopes
Resumo:
Substantial effort has recently been put into the development of climate reconstructions from tree-ring stable carbon isotopes, though the interpretation of long-term trends retained in such timeseries remains challenging. Here we use detrended δ13C measurements in Pinus uncinata tree-rings, from the Spanish Pyrenees, to reconstruct decadal variations in summer temperature back to the 13th century. The June-August temperature signal of this reconstruction is attributed using decadally as well as annually resolved, 20th century δ13C data. Results indicate that late 20th century warming has not been unique within the context of the past 750 years. Our reconstruction contains greater am-plitude than previous reconstructions derived from traditional tree-ring density data, and describes particularly cool conditions during the late 19th century. Some of these differences, including early warm periods in the 14th and 17th centuries, have been retained via δ13C timeseries detrending - a novel approach in tree-ring stable isotope chronology development. The overall reduced variance in earlier studies points to an underestimation of pre-instrumental summer temperature variability de-rived from traditional tree-ring parameters.
Resumo:
The ratio of oxygen isotopes is a temperature proxy both in precipitation and in the calcite of lacustrine sediments. The very similar oxygen-isotope records from Greenland ice cores and European lake sediments during the Last Glacial Termination suggest that the drastic climatic changes occurred quasi-simultaneously on an extra-regional, probably hemispheric scale. In order to study temporal relations of the different parameters recorded in lake sediments, for example biotic response times to rapid climatic changes, a precise chronology is required. In unlaminated lake sediments there is not yet available a method to provide a high-resolution chronology, especially for periods with radiocarbon plateaux. Alternatively, an indirect time scale can be constructed by linking the lake stratigraphy with other well-dated climate records. New oxygen-isotope records from Gerzensee and Leysin, with an estimated sampling resolution of between 15 and 40 years, match the Greenlandic isotope record in many details. Under the assumption that the main variations in temperature and thus in oxygen isotopes occurred about simultaneously in Greenland and Switzerland, we have assigned a time scale to the lake sediments of Gerzensee and Leysin by wiggle-matching their stable-isotope records with those of Greenland ice cores, which are among the best dated climatic archives. We estimate a precision of 20 to 100 years during the Last Glacial Termination.
Resumo:
Seventeen whole-rock samples, generally taken at 25-50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for 87Sr/86Sr ratios, Sr and Rb concentrations, and 18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330-560 m interval, 5 samples have a restricted range of 0.70255-0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260-330 m interval, approximately intermediate Sr isotopic ratios are found. Delta18O values (?) range from 6.4 to 7.8 in the upper 260 m, 6.2-6.4 in the 270-320 m interval, and 5.8-6.2 in the 320-560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320-560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration. The higher 87Sr/86Sr and 18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater (87Sr/86Sr = 0.7091) increased basalt 87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock delta18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.
Resumo:
We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.
Resumo:
A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral delta18O. At 29°S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral delta18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral delta18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral delta18O demonstrate a high variability in spectral composition through time. Oscillations in the 5-7-y, 14-15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral delta18O suggests a rise in SST by 0.6°C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4°C since AD 1795 is inferred from the coral record.
Resumo:
This study documents the biological signatures impressed upon the sedimentary record underlying both the 5°N upwelling system of the Somali Current and the equatorial area of the Somali Basin out of the upwelling influence. The evolution of these two distinct hydrographic systems is compared for the last 160 kyr. Correspondence and cluster analyses are performed on combined radiolarian and planktonic foraminiferal quantitative data in order to study the changes of the planktonic assemblages through time and space. The Upwelling Radiolarian Index (URI) is used as a productivity proxy. The water temperature and hydrographic structure of the upper water masses appear to be the major factors controlling the distribution patterns of the fauna. The relative abundances of three groups of foraminifera, cold water form (dextral N. pachyderma), mixed layer dwellers (G. trilobus, G. ruber, G. sacculifer, G. conglobatus, and G. glutinata), and thermocline dwellers (G. menardii, G. tumida, N. dutertrei, G. crassaformis, and P. obliquiloculata), follow distinct evolutionary patterns at the two sites during the last 160 kyr. At the equatorial site (core MD 85668), downcore fluctuations in the relative abundances of the three groups are closely related to the glacial/interglacial cyclicity and provide some insights into the interpretation of hydrographic changes. The dominance of the mixed layer foraminifera at the transition intervals between isotope stages 6/5 and 2/1, combined with weak URI values, is thought to reflect the reorganization of the oceanographic circulation. These short-term events (with a duration of < 5000 year) could be related to the rapid inflow of oxygen-depleted water through the Indonesian straits as a result of sea level rise during deglaciation. Underneath the 5°N gyre (core MD 85674), the response to global climatic changes is overprinted by the regional effect of the Somalian upwelling, which has been persistent over the last 160 kyr.