999 resultados para CRYSTAL POLYMORPHISM
Resumo:
A miniature furnace suitable for routine collection of x-ray data up to 1000°C from single crystals on the Hilger and Watts linear diffractometer, without restricting the normally allowed region of reciprocal space on the diffractometer, is described. The crystal is heated primarily by radiation from a surrounding current-heated, stationary platinum coil wound on a silica bracket. The coil is split at its middle to provide a 4 mm gap for crystal mounting and x-irradiation. The crystal, mounted on a standard goniometer head, can be rotated and centred freely, as in the room temperature case. There is no need for any radiation shields or water-cooling arrangement. Investigations up to 1500°C are possible with slight modifications of the furnace.
Resumo:
A systematic study has been made of the crystal co-ordination of the barium ion in various compounds whose structures have been solved. Apart from the more common co-ordination polyhedra which are enumerated in text-books, a number of new polyhedra have been identified, particularly in cases where the co-ordination numbers are unusual, such as ten or eleven. According to the radius-ratio rule of Pauling, a co-ordination number of nine or ten is normally expected for the barium ion. The present investigations, however, reveal that it shows a variety of co-ordinations with ligancies from six up to twelve. Some of the factors that might possibly enter in explaining this wide range of co-ordination numbers are discussed. It appears as though the part played by the Ba2+ ion in deciding the structure is secondary, limiting itself only to occupying vacant spaces provided by other atoms in the crystal.
Resumo:
The crystal structure of copper ammonium oxalate dihydrate (space group P1̃) has been derived from a refinement of the two-dimensional (hk0) and (0kl) x-ray data using the atomic coordinateis of the isomorphous salt CuK 2(C2O4)2.2H2O as the starting point of the analysis. In contrast to the chromium complexes of oxalic acid the C-C bonds in both the two nonequivalent oxalate ions in the unit cell are single bonds (1.58 and 1.61 Å) consistent with the conclusion of Jeffrey and Parry that the carboxyl groups of the oxalate ion are separated by a pure a bond with little or no π conjugation across the molecule. Both the oxalate ions are slightly nonplanar. The copper ions occupy the special positions (0, 0, 0) and 0, 1/2, 0) and their coordination is of the distorted octahedral type with four nearest oxygen neighbors ( ≃ 2 Å) at the corners of a square and two more distant atoms along the octahedral bond direction. The environment of the NH4+ ions consists of eight nearest oxygen atoms at a mean distance of 3 Å.
Resumo:
The particle size and crystallite size of anatase increase markedly in the region of the crystal structure transformation. The unit cell of anatase seems to expand prior to the transformation to rutile. This expansion has been attributed to a displacive transformation of the type defined by Buerger. Smaller particle size and larger surface area seem to favour the transformation. The kinetics of the transformation of anatase prepared by the hydrolysis of titanium sulphate have been studied at different temperatures and are found to be considerably different from the kinetics of the transformation of pure anatase. The transformation becomes immeasurably slow below ∼695 ± 10°C compared to ∼610°C for pure anatase. An induction period is observed in the transformation of anatase obtained from sulphate hydrolysis and the duration decreases with increase in temperature. The activation energy is ∼120 kcal/mole, a value higher than that for the pure anatase-rutile transformation. The results have been interpreted in terms of the relative rates of nucleation and propagation processes. The activation energy for the nucleation process seems to be much larger than for the propagation process. The kinetics of the transformation of anatase samples doped with different amounts of sulphate ion impurity have also been studied and the transformation is found to be progressively decelerated with increase in the impurity concentration. The energy of activation for the transformation appears to increase progressively with increase in impurity concentration.
Resumo:
The titled complex, obtained by co-crystallization (EtOH/25 degrees C),is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The crystal and molecular structure has been determined by the heavy-atom method and refined by the least-squares procedure to R= 8"3 % for 2033 photographically observed reflexions. The compound crystallizes in the space group P]" with two molecules in a unit cell of dimensions a = 11"68 + 0-02, b = 12"91 +0"02, c= 10"43+0"02/~, e= 114"7+ 1, fl=90-2+ 1 and 7,= 118.3+ 1 °. The unit cell also contains one molecule of the solvent, benzene. The 'cage' part of the molecule exhibits a large number of elongated bonds and strained internal valency angles. The bridgehead angle in the bicyclic heptane ring system is 89 °. The acetate group at C(16) and the methyl group at C(15) are cis to each other.
Resumo:
The crystal structure of the complex La(NO3)3.4(CH3)2SO has been solved by the heavy-atom method. The complex crystallizes in the monoclinic space group C2/e with four formula units in a unit cell of dimensions a= 14.94, b= 11.04, c= 15.54 A and fl= 109 ° 10'. The parameters have been refined by threedimensional least-squares procedures with anisotropic thermal parameters for all atoms except hydrogen. The final R index for 1257 observed reflexions is 0.094. The La 3 + ion is coordinated by ten oxygen atoms with La-O distances varying from 2.47 to 2.71 A. The geometry of the coordination polyhedron is described.