771 resultados para CONFINEMENT
Resumo:
Leprosy as a public health problem , there is still quite some time , even with treatment for decades . Your health-disease process is marked by a historical backdrop of stigma , prejudice, social exclusion and authoritarian decisionducts , in order to extinguish the disease milieu under the regime of compulsory confinement of the patient. In this perspective , the Brazilian public health twentieth century adopted policies of compulsory isolation , which meant that those who receive a diagnosis of leprosy were isolated from society and their families in hospitals colonies . Objective is, to the study, rescue the trajectory of health professionals in the Colony Hospital St. Francis of Assisi , in Natal / RN ; Identify the policy was perceived as compulsory institutionalization imposed for leprosy patients by health professionals ; describe the behaviors Professional Hospital adopted in Cologne ; Retrieve information about the existence and functioning of the Hospital and Create a documentary of historical fragments of leprosy from the point of view of professionals from a former colony. Exploratory - descriptive method with a qualitative approach , using the methodological framework thematic oral history was used . Obtained approval by the IRB of the Federal University of Rio Grande do Norte, under Protocol No 461 403 and CAAE 19476913.9.0000.5537 . Be interviewed during the period of November and December 2013 , five health professionals who worked in the hospital colony , using audio recorder and images to capture and record the statements. The interviews were transcribed , textualized, transcriadas and sent to reviewers to step conference of the reports. Subsequently , analysis of the stories was made from the proposed content analysis of Bardin . The results and discussion are presented in the form of article: Opinion of nursing professionals who worked in a hospital for leprosy colony , which aimed to : identify the opinion of nurses who worked in hospital colony on the lives of patients . In this article, three main themes were highlighted and discussed from the reports of colaboradoes : I - The socialization process of internal II - 16 Prejudice , stigma and discrimination III - Social exclusion versus inclusion . We conclude that , in the context of the colony hospital, the performance of health professionals contributed significantly to that stigma , prejudice and social exclusion would be minimized and that the experience of asylum seekers in the colony were not seen more traumatic
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The marsh deer (Blastocerus dichotomus) is an endangered species froth the marshlands of central South America. Its population has declined in several regions due to the loss of available habitat caused by human activities, especially the construction of hydroelectric darns. The capture of individual deer is critical for research programs and population management. This report describes a novel live-capture technique, which uses a helicopter to drive the animals into a terrain that restricts their movement such as thick vegetation or deep water (60-120 cm in depth). Following confinement, animals are manually restrained. The short pursuit time (median = 2 thin), low mortality rate (0.82-3.28%), and the absence of injury to both the capture team and animals suggest that this method is appropriate for the safe capture of this species. Body temperature correlated with the pursuit time (R-2 = 0.15) but was not significantly altered with pursuit times <3 min.
Resumo:
Rationale: Mice exhibit antinociception after a single experience in the elevated plus maze (EPM), an animal model of anxiety. Objective: This study investigated the mechanisms involved in this form of anxiety-induced antinociception. Methods: Nociception was evaluated by means of the writhing test in mice confined either to the open or enclosed arms of the EPM. The effects of systemic (naloxone, midazolam and 8-OH-DPAT) or intra-amygdala (8-OH-DPAT. NAN-190 and midazolam) drug infusions were investigated in mice previously treated i.p. with 0.6% acetic acid, an algic stimulus that induces abdominal contortions. The effects of these drugs on conventional measures of anxiety (% entries and % time in open arms) in a standard EPM test were also independently investigated. Results: Open-arm confinement resulted in a high-magnitude antinociception (minimum 85%, maximum 450%) compared with enclosed arm confinement. The opiate antagonist naloxone (1 mg/kg and 10 mg/kg) neither blocked this open arm-induced antinociception (OAIA) nor modified indices of anxiety in EPM. Administration of midazolam (0.5-2 mg/kg, s.c.) increased OAIA and produced antinociception in enclosed confined animals, as well as attenuating anxiety in the EPM. The 5-HT(1A) receptor agonist 8-OH-DPAT (0.05-1 mg/kg, s.c.) had biphasic effects on OAIA, antagonising the response at the lowest dose and intensifying it at the highest dose. In addition, low doses of this agent reduced anxiety in the EPM. Although bilateral injections of 8-OH-DPAT (5.6 nmol/0.4 mu l) or NAN-190 (5.6 nmol and 10 nmol/0.4 mu l) into the amygdala did not alter OAIA, increased anxiety was observed in the EPM. In contrast, intra-amygdala administration of midazolam (10 nmol and 30 nmol/0.4 mu l) blocked both OAIA and anxiety. Conclusions: These results with systemic and intracerebral drug infusion suggest that 5-HT(1A) receptors localised in the amygdala are not involved in the pain inhibitory processes that are recruited during aversive situations. However, activation of these receptors does phasically increase anxiety. Although the intrinsic antinociceptive properties of systemically administered midazolam confounded interpretation of its effects on OAIA, intra-amygdala injections of this compound suggest that benzodiazepine receptors in this brain region modulate both the antinociceptive and behavioural (anxiety) responses to the EPM.
Resumo:
This study investigated whether the opportunity to avoid or escape the open arms of an elevated plus-maze (EPM) affects the antinociceptive response observed when mice are subjected to open arm confinement. Furthermore, in order to better characterize the relationship between emotion and antinociception in the EPM, we examined the behavioral effects of midazolam injection into the midbrain periaqueductal gray matter (PAG). As our main aim was to evaluate the relevance of different levels of approach-avoid conflict (i.e. The presence of open and closed arms) to maze-induced antinociception, mice were exposed to one of three types of EPM-a standard EPM (sEPM), an open EPM (oEPM: four open arms) or, as a control condition, an enclosed EPM (eEPM: four enclosed arms). Nociception was assessed using the formalin test. Twenty minutes after formalin injection (50 mu l, 2.5% formalin) into the dorsal right hind paw, mice received an intra-PAG injection of saline or midazolam (10-20 nmol). Five minutes later, they were individually exposed to one of the mazes for 10 min (25-35 min after formalin injection). Videotapes of the test sessions were scored for a variety of behavioral measures including time spent licking the formalin-injected paw. To examine whether the effects of midazolam on anxiety-like behavior may have been influenced by concurrent nociceptive stimulation (i.e. formalin pretreatment), naive mice were submitted to a similar procedure to that described above for the sEPM test but without formalin pretreatment. Results showed that mice exposed to the oEPM spent significantly less time licking the injected paw compared to groups exposed to either the sEPM or eEPM. Although exposure to the sEPM induced anxiety-like behaviors (i.e. open arm avoidance), it did not result in antinociception. Intra-PAG infusions of midazolam failed to block oEPM-induced antinociception or to alter sEPM-induced anxiety in mice that had received formalin injection. However, under normal test conditions (i.e. in the absence of formalin-induced nociceptive stimulation), intra-PAG midazolam produced clear anti-anxiety effects in mice exposed to the sEPM. Findings are discussed in terms of different emotional states induced by the oEPM and sEPM and the influence of concurrent nociceptive stimulation on the anti-anxiety effect of intra-PAG midazolam. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
São apresentadas séries históricas de indicadores demográficos e sanitários para a população com 60 anos e mais do Brasil, Estado de São Paulo e Município de Araraquara, de porte médio. em 1991, os idosos eram 7,8% da população brasileira e 9,7% de Araraquara, superando em número as crianças menores de 5 anos (8,9%). Aumentou o peso relativo do segmento com mais idade (70 anos e mais), que já representa 40% do total, assim como o índice de urbanização dos idosos, 93,7% no Estado e 96,3% no Município, acima da média da população em geral em 1991. As principais causas de morte são as doenças do aparelho circulatório (40% do total de óbitos) e os neoplasmas (15%). São sugeridas medidas para a assistência à saúde dos idosos: a) expansão da capacidade atual de atendimento, através do treinamento gerontológico de médicos generalistas e enfermeiros da rede pública e privada; b) incremento das atividades educativas já existentes, dirigidas aos idosos, profissionais da saúde e educadores do ensino médio; c) incremento do programa de visita domiciliar aos idosos e criação de hospital-dia para evitar internações necessárias e garantir a manutenção dos baixos níveis atuais de institucionalização em asilos (0,7% em Araraquara). A existência de pelo menos 35% dos idosos de Araraquara, com acesso à assistência privada à saúde, reforça a importância da inclusão desses serviços nos programas locais de saúde da terceira idade.
Resumo:
We have used ab initio calculations to investigate the electronic structure of SiGe based nanocrystals (NC s). This work is divided in three parts. In the first one, we focus the excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals. We also estimate the changes induced by the effect of strain the electronic structure. We show that Ge/Si (Si/Ge) NC s exhibits type II confinement in the conduction (valence) band. The estimated potential barriers for electrons and holes are 0.16 eV (0.34 eV) and 0.64 eV (0.62 eV) for Si/Ge (Ge/Si) NC s. In contradiction to the expected long recombination lifetimes in type II systems, we found that the recombination lifetime of Ge/Si NC s (τR = 13.39μs) is more than one order of magnitude faster than in Si/Ge NC s (τR = 191.84μs). In the second part, we investigate alloyed Si1−xGex NC s in which Ge atoms are randomly positioned. We show that the optical gaps and electron-hole binding energies decrease linearly with x, while the exciton exchange energy increases with x due to the increase of the spatial extent of the electron and hole wave functions. This also increases the electron-hole wave functions overlap, leading to recombination lifetimes that are very sensitive to the Ge content. Finally, we investigate the radiative transitions in Pand B-doped Si nanocrystals. Our NC sizes range between 1.4 and 1.8 nm of diameters. Using a three-levels model, we show that the radiative lifetimes and oscillator strengths of the transitions between the conduction and the impurity bands, as well as the transitions between the impurity and the valence bands are strongly affected by the impurity position. On the other hand, the direct conduction-to-valence band decay is practically unchanged due to the presence of the impurity
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells
Resumo:
In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal
Resumo:
Coherent properties and Rabi oscillations in two-level donor systems, under terahertz excitation, are theoretically investigated. Here we are concerned with donor states in bulk GaAs and GaAs-(Ga,Al)As quantum dots. We study confinement effects, in the presence of an applied magnetic field, on the electronic and on-center donor states in GaAs- (Ga,Al)As dots, as compared to the situation in bulk GaAs, and estimate some of the associated decay rate parameters. Using the optical Bloch equations with damping, we study the time evolution of the Is and 2p(+) states in the presence of an applied magnetic field and of a terahertz laser. We also discuss the role played by the distinct dephasing rates on the photocurrent and calculate the electric dipole transition moment. Results indicate that the Rabi oscillations are more robust as the total dephasing rate diminishes, corresponding to a favorable coherence time.
Resumo:
The high-energy states of a shallow donor in a GaAs/Ga0.7Al0.3As multiple-quantum-well structure subjected to a magnetic field in the growth direction are studied both theoretically and experimentally. Effects due to higher confinement subbands as well as due to the electron-phonon interaction are investigated. We show that most of the peaks in the infrared photoconductivity spectrum are due to direct transitions from the ground state to the m = +/-1 magnetodonor states associated with the first subband, but transitions to the m = +/-1 states of the third subband are also apparent. The remaining photoconductivity peaks are explained by phonon-assisted impurity transitions.