996 resultados para CARBOHYDRATE-BINDING MODULE
Resumo:
Journal of Bacteriology (Apr 2006) 3024-3036
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Conservação e Restauro, especialidade de Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Leishmania braziliensis is a causative agent of American Cutaneous Leishmaniasis (ACL). The 034-JCG strain, isolated from a patient from the northern region of Paraná State, Brazil, was cultivated in Blood Agar Base medium, lyophilized and submitted to phenol-water extraction. The extract was treated with RNase I. The carbohydrate containing-antigen (Ag-CHO) was immunogenic to rabbits and showed at least a fraction with some negative charge at pH 8.2. This antigen showed cross-reactivity with the phenol-water extract of the growth medium used for the culture of promastigotes and with the surface antigens of promastigotes. Its composition is: 24.3% of total sugars, from which 11.2% of galactose, 7.5% of mannose and 5.6% of ribose. Protein content was 5.4% and phosphate 18.5%. The antigenic activity was maintained after: repeated freezing-thawing; lyophilization; heating at 100ºC for 30 minutes; treatment with RNase, trichloroacetic acid and sodium metaperiodate. The precipitin line obtained is Periodic Acid Schiff positive. The application of the Ag-CHO in counterimmunoelectrophoresis reaction for the immunodiagnosis of ACL showed 60% sensitivity, and no cross-reaction with the five sera of Chagas' disease patients tested. The use of this antigen in a more sensitive technique, with more samples of sera, may improve these results.
Resumo:
The objective of this study was to assess vitamin A status and association between acute diarrhoea and plasma levels of vitamin A through cross-sectional comparison in children. Plasma vitamin A was measured by colorimetric method of Neeld & Pearson and RBP by radial immunodiffusion technique. Seventy eight children (aged 18-119 months), 26 with current history of diarrhoea and 52 children as controls (outpatient from the Santa Casa de Misericórdia Hospital in metropolitan area of São Paulo City, Brazil) were studied. Children with history of diarrhoea showed significant low levels (mean ± s.e.) as compared to controls, vitamin A (15.87 ± 1.4 µg/dl vs. 21.14 ± 1.15 µg/dl, p < 0.007) and RBP (1.70 ± 0.2 mg/dl vs. 2.52 ±0.11 mg/dl). Multivariate logistic regression adjusted by sex, age, nutritional status and mother education revealed association between diarrhoea and inadequate levels of vitamin A and RBP.
Resumo:
Dissertation presented to obtain the Doutoramento (Ph.D.) degree in Biochemistry at the Instituto de Tecnologia Qu mica e Biol ogica da Universidade Nova de Lisboa
Resumo:
This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.
Resumo:
This work uses surface imprinting to design a novel smart plastic antibodymaterial (SPAM) for Haemoglobin (Hb). Charged binding sites are described here for the first time to tailor plastic antibody nanostructures for a large size protein such as Hb. Its application to design small, portable and low cost potentiometric devices is presented. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its ionic interaction with charged vinyl monomers. A neutral polymeric matrix was created around these and the imprinted protein removed. Additional materials were designed in parallel acting as a control: a neutral imprinted material (NSPAM), obtained by removing the charged monomers from the procedure, and the Non-Imprinted (NI) versions of SPAM and NSPAM by removing the template. SEM analysis confirmed the surface modification of the silica nanoparticles. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Electromotive force (emf) variations were detected only for selective membranes having a lipophilic anionic additive in the membrane. The presence of Hb inside these membranes was evident and confirmed by FTIR, optical microscopy and Raman spectroscopy. The best performance was found for SPAM-based selective membranes with an anionic lipophilic additive, at pH 5. The limits of detection were 43.8 mg mL 1 and linear responses were obtained down to 83.8 mg mL 1, with an average cationic slope of +40 mV per decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results.
Resumo:
Astringency is an organoleptic property resulting mostly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers but being typically measured by sensorial panels it turns out subjective and expensive. The main goal of the present work is to develop a sensory system to estimate astringency relying on protein/polyphenol interactions. For this purpose, a model protein was immobilized on a sensory gold surface and its subsequent interaction with polyphenols was measured by Surface Plasma Resonance (SPR). α-amylase and pentagalloyl glucose (PGG) were selected as model protein and polyphenol, respectively. To ensure specific binding between these, various surface chemistries were tested. Carboxylic terminated thiol decreased the binding ability of PGG and allowed covalent attachment of α-amylase to the surface. The pH 5 was the optimal condition for α-amylase immobilization on the surface. Further studies focus on Localized SPR sensor and application to wine samples, providing objectivity when compared to a trained panel.
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.