990 resultados para Boundary Integral Equation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the family of singularly nonautonomous plate equation with structural dampingu(tt) + a(t, x)u(t) - Delta u(t) + (-Delta)(2)(u) + lambda u = f(u),in a bounded domain Omega subset of R(n), with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in H(0)(2)(Omega) x L(2)(Omega) and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study exact boundary controllability for a two-dimensional wave equation in a region which is an angular sector of a circle or an angular sector of an annular region. The control, of Neumann type, acts on the curved part of the boundary, while in the straight part we impose homogeneous Dirichlet boundary condition. The initial state has finite energy and the control is square integrable. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an anisotropic nonlinear diffusion equation for image restoration is presented. The model has two terms: the diffusion and the forcing term. The balance between these terms is made in a selective way, in which boundary points and interior points of the objects that make up the image are treated differently. The optimal smoothing time concept, which allows for finding the ideal stop time for the evolution of the partial differential equation is also proposed. Numerical results show the proposed model's high performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-body Dirac(Breit) equation with potentials associated to one-boson-exchanges with cutoff masses is solved for the deuteron and its observables calculated. The 16-component wave-function for the Jπ = 1+ state contains four independent radial functions which satisfy a system of four coupled differential equations of first order. This system is numerically integrated, from infinity towards the origin, by fixing the value of the deuteron binding energy and imposing appropriate boundary conditions at infinity. For the exchange potential of the pion, a mixture of direct plus derivative couplings to the nucleon is considered. We varied the pion-nucleon coupling constant, and the best results of our calculations agree with the lower values recently determined for this constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-function normalization after the numerical solution. We have a two-point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal for large distances. In order to obtain fast convergence, the secant method is used. © 1999 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.