996 resultados para Boron oxide
Resumo:
Electron spin resonance (ESR) of d5 ions (Fe3+ and Mn2+) has been investigated in PbO---PbF2 and PbO---PbCl2 glasses in wide ranges of composition. ESR spectra of d5 ions in these glasses exhibit significant differences which we have attributed to at least three important causes: (i) The ionic potentials of Fe3+ and Mn2+ are different. Hence Fe3+ ions tend to acquire their own environment while Mn2+ ions take up substitutional (Pb2+ ion) positions. (ii) The sizes and nephelauxetic behaviours of O2- and F- ions are similar. Thus even when there is a mixed anionic coordination, the environment of Mn2+ ions is highly symmetrical in oxyfluoride glasses. The Mn2+ spectra in oxychloride glasses are considerably different. (iii) Increase in halide ion concentration increases the ionicity of lead-ligand bonding and favours a more symmetrical environment around dopant ions in halide-rich glasses. The features in ESR spectra have been interpreted in the light of known behaviour of d5 ions in glasses and also in the context of known structural features of PbO---PbX2 glasses. Dopant ions appear to cluster at high concentrations although isolated low-symmetry sites are still observed. Effects of crystallization and annealing upon ESR spectra have also been investigated.
Resumo:
Activation of macrophages by interferon gamma (IFN- ) and the subsequent production of nitric oxide (NO) are critical for the host defence against Salmonella enterica serovar Typhimurium infection. We report here the inhibition of IFN- -induced NO production in RAW264.7 macrophages infected with wild-type Salmonella. This phenomenon was shown to be dependent on the nirC gene, which encodes a potential nitrite transporter. We observed a higher NO output from IFN- -treated macrophages infected with a nirC mutant of Salmonella. The nirC mutant also showed significantly decreased intracellular proliferation in a NO-dependent manner in activated RAW264.7 macrophages and in liver, spleen and secondary lymph nodes of mice, which was restored by complementing the gene in trans. Under acidified nitrite stress, a twofold more pronounced NO-mediated repression of SPI2 was observed in the nirC knockout strain compared to the wild-type. This enhanced SPI2 repression in the nirC knockout led to a higher level of STAT-1 phosphorylation and inducible nitric oxide synthase (iNOS) expression than seen with the wild-type strain. In iNOS knockout mice, the organ load of the nirC knockout strain was similar to that of the wild-type strain, indicating that the mutant is exclusively sensitive to the host nitrosative stress. Taken together, these results reveal that intracellular Salmonella evade killing in activated macrophages by downregulating IFN- -induced NO production, and they highlight the critical role of nirC as a virulence gene.
Resumo:
Magnetic susceptibilities of several members of the series of oxides of the general formula LaNi1-xMxO3 (M = Cr, Fe, or Co) are reported. The oxides show evidence for interesting ferrimagnetic (Cr and Co) and antiferromagnetic (Fe) interactions.
Resumo:
Photoacoustic spectroscopy has been employed to estimate quantitatively the acid sites on oxide catalysts. The technique involves the measurement of the ratio of intensities of absorption bands due to conjugate bases and acids of indicators adsorbed on the catalyst surface as a function of the amount of added n-butylamine. Basic sites in sodium-impregnated alumina samples have been examined by adsorbing phenolphthalein on these surfaces.
Resumo:
Single crystals of tin oxide have been grown under conditions obtained in oil fired porcelain tunnel kilns. It was noted that the reducing conditions in the kilns help in the growth of SnO2 crystals at much lower temperatures (1300°C). The growth seems to more pronounced in presence of silicon carbide. The crystals grow as long fibres of 0.1 to 0.5 mm dia. and 10 to 50 mm length. The crystals exhibit rutile structure and the direction of growth seems to be favoured in any one of the major axes a and c.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.
Resumo:
Atomic layer deposition (ALD) is a method for thin film deposition which has been extensively studied for binary oxide thin film growth. Studies on multicomponent oxide growth by ALD remain relatively few owing to the increased number of factors that come into play when more than one metal is employed. More metal precursors are required, and the surface may change significantly during successive stages of the growth. Multicomponent oxide thin films can be prepared in a well-controlled way as long as the same principle that makes binary oxide ALD work so well is followed for each constituent element: in short, the film growth has to be self-limiting. ALD of various multicomponent oxides was studied. SrTiO3, BaTiO3, Ba(1-x)SrxTiO3 (BST), SrTa2O6, Bi4Ti3O12, BiTaO4 and SrBi2Ta2O9 (SBT) thin films were prepared, many of them for the first time by ALD. Chemistries of the binary oxides are shown to influence the processing of their multicomponent counterparts. The compatibility of precursor volatilities, thermal stabilities and reactivities is essential for multicomponent oxide ALD, but it should be noted that the main reactive species, the growing film itself, must also be compatible with self-limiting growth chemistry. In the cases of BaO and Bi2O3 the growth of the binary oxide was very difficult, but the presence of Ti or Ta in the growing film made self-limiting growth possible. The application of the deposited films as dielectric and ferroelectric materials was studied. Post-deposition annealing treatments in different atmospheres were used to achieve the desired crystalline phase or, more generally, to improve electrical properties. Electrode materials strongly influenced the leakage current densities in the prepared metal insulator metal (MIM) capacitors. Film permittivities above 100 and leakage current densities below 110-7 A/cm2 were achieved with several of the materials.
Resumo:
Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Calcined samples of chromia supported on Al2O3, ZnO, or SnO2 show both Cr(VI) and Cr(III) on the surface, Cr(VI) being preponderant in the case of Al2O3-supported catalysts. The proportion of Cr(VI) decreases with increase in Cr content of the calcined catalysts. Reduction of the supported chromia catalysts in H2 at 720 K for 1 hr gives rise to Cr(III) and Cr(V). On carrying out the dehydrogenation of cyclohexane on the chromia catalysts a higher proportion of Cr(V) is found than after treatment with hydrogen. Vanadia supported on Al2O3 or MoO3 shows significant proportion of V(IV) on carrying out the oxidation of toluene on the catalysts. Calcined MoO3 (10%)/Al2O3 shows only Mo(VI) on the surface at 300 K, but on heating to 670 K in vacuum shows the presence of a considerable proportion of Mo(V) which on cooling disproportionates to Mo(IV) and Mo(VI). Mo(V) is noticed on surfaces of this catalyst on reduction with hydrogen as also on carrying out dehydrogenation of cyclohexane. While Bi2MoO6 shows only Mo(VI) on the surface at 300 K, heating it to 670 K in vacuum changes it entirely to Mo(V) which then gives rise to Mo(IV) and Mo(VI) on cooling.