976 resultados para Biodegradation of cork
Resumo:
The influence of a new aeration system on the biopile performance was investigated. The purpose was to increase biodegradation efficiency by optimising airflow through the pile. During a 1-month field trial, the performance of a new system using two perforated vertical pipes with wind-driven turbines was compared with that of a standard pile configuration with two horizontal perforated pipes. Both piles were composed of a similar mix of diesel-contaminated soils, woodchips, compost and NPK fertiliser. Hydrocarbons were recovered using solvent extraction, and determined both gravimetrically and by gas chromatography. Total heterotrophs, pH and moisture content were also assessed. Air pressure measurements were made to compare the efficiency of suction in the pipes. Results at the end of the experiment showed that there was no significant difference between the two piles in the total amount of hydrocarbon biodegradation. The normalised degradation rate was, however, considerably higher in the new system than in the standard one, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile. The pressure measurements showed a significant improvement in the suction produced by the new aeration system. However, many factors other than the airflow (oxygen supply) may influence and limit the biodegradation rates, including moisture content, age of contaminants and the climatic conditions. Additional experiments and modelling need to be carried out to explore further the new aeration method and to develop criteria and guidelines for engineering design of optimal aeration schemes in order to achieve maximum biodegradation in biopiles. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).
Resumo:
An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed for the measurement of the size resolved chemical composition of single particles at a site in Cork Harbour, Ireland for three weeks in August 2008. The ATOFMS was co-located with a suite of semi-continuous instrumentation for the measurement of particle number, elemental carbon (EC), organic carbon (OC), sulfate and particulate matter smaller than 2.5 μm in diameter (PM2.5). The temporality of the ambient ATOFMS particle classes was subsequently used in conjunction with the semi-continuous measurements to apportion PM2.5 mass using positive matrix factorisation. The synergy of the single particle classification procedure and positive matrix factorisation allowed for the identification of six factors, corresponding to vehicular traffic, marine, long-range transport, various combustion, domestic solid fuel combustion and shipping traffic with estimated contributions to the measured PM2.5 mass of 23%, 14%, 13%, 11%, 5% and 1.5% respectively. Shipping traffic was found to contribute 18% of the measured particle number (20–600 nm mobility diameter), and thus may have important implications for human health considering the size and composition of ship exhaust particles. The positive matrix factorisation procedure enabled a more refined interpretation of the single particle results by providing source contributions to PM2.5 mass, while the single particle data enabled the identification of additional factors not possible with typical semi-continuous measurements, including local shipping traffic.
Resumo:
Aim: To study the outcomes for restored primary molar teeth; to examine outcomes in relation to tooth type involved, intracoronal restoration complexity and to the material used. Materials and methods: Design: Retrospective study of primary molar teeth restored by intracoronal restorations. A series of restored primary molar teeth for children aged 6-12 years was studied. The principal outcome measure was failure of initial restoration (re-restoration or extraction). Three hundred patient records were studied to include three equal groups of primary molar teeth restored with amalgam, composite or glass ionomer, respectively. Restorative materials, the restoration type, simple (single surface) or complex (multi-surface) restoration, and tooth notation were recorded. Subsequent interventions were examined. Data were coded and entered into a Microsoft Excel database and analysis undertaken using SPSS v.18. Statistical differences were tested using the c2 test of statistical significance. Results: Of the 300 teeth studied, 61 restoration failures were recorded with 11 of those extracted. No significant differences were found between outcomes for upper first, upper second, lower first or lower second primary molars. Outcomes for simple primary teeth restored by intracoronal restorations were significantly better than those for complex intracoronal restorations (P = 0.042). Teeth originally restored with amalgam accounted for 19.7% of the 61 failures, composite for 29.5%, while teeth restored with glass ionomer represented 50.8% of all restoration failures. The differences were significant (P = 0.012). Conclusions: The majority (79.7%) of the 300 restored primary teeth studied were successful, and 3.7% teeth were extracted. Restorations involving more than one surface had almost twice the failure rate of single surface restorations. The difference was significant. Significant differences in failure rates for the three dental materials studied were recorded. Amalgam had the lowest failure rate while the failure rate with glass ionomer was the highest.
Resumo:
The purpose of this research is to investigate how international students negotiate encounters with Irish students and construct ‘meaning’ from those encounters in the spaces of the university and city. As cities are increasingly characterised by a multiplexity of diversity, the issue of living with difference is becoming more and more pertinent. In the wake of escalating socio-spatial polarisation, inter-cultural tension, racism, and xenophobia, the geographies of encounter seek to untangle the interactions that occur in the quotidian activities and spaces of everyday life to determine whether such encounters might reduce prejudice, antipathy and indifference and establish common social bonds (Amin 2002; Valentine 2008). Thus far, the literature has investigated a number of sites of encounter; public space, the home, neighbourhoods, schools, sports clubs, public transport, cafes and libraries (Wilson 2011; Schuermans 2013; Hemming 2011; Neal and Vincent 2011; Mayblin, Valentine and Anderrson 2015; Laurier and Philo 2006; Valentine and Sadgrove 2013; Harris, Valentine and Piekut 2014; Fincher and Iveson 2008). While these spaces produce a range of outcomes, the literature remains frustrated by a lack of clarity of what constitutes a ‘meaningful’ encounter and how such encounters might be planned for. Drawing on survey and interview data with full-time international students at University College Cork, Ireland, this study contributes to understanding how encounters are shaped by the construction and reproduction of particular identities in particular spaces, imbuing spaces with uneven power frameworks that produce diverse outcomes. Rather than identifying a singular ‘meaningful’ outcome of encounter as a potential panacea to the issues of exclusion and oppression, the contention here is to recognise a range of outcomes that are created by individuals in a range of ways. To define one outcome of encounter as ‘meaningful’ is to overlook the scale of intensity of diverse interactions and the multiplicity of ways in which people learn to live with difference.
Resumo:
Between May 1920 and March 1923, there were seventy-three houses belonging to the County Cork establishment burnt down by IRA and anti-treaty forces. More houses were destroyed by this method in Cork than in any other Irish county in the same timeframe. The establishment were targeted by the IRA for their political, military and social persuasions that were essentially in opposition to the nationalist movement. The motivations behind these burnings is examined, the main reasons being reprisals for actions taken by Crown forces, military reasons, loyalty of house owners to the British government and agrarianism. The geographical distribution of these burnings is also provided to reveal how active individual IRA brigades were that operated within the county. Though there were few areas of the county left unaffected by the occurrence of arson attacks, there were higher concentrations of burnings in some areas. The house burnings in County Cork did not conform to the national pattern of house burnings and the reasons for this are explored. This study argues that the presence of Crown forces in Cork and their implementation of an official reprisal policy in January 1921 escalated military conflict, and arson attacks became a key tactic utilised by IRA forces in response to this policy. The aftermath of house burnings for members of the establishment is revealed through the various compensation committees that were formed after both the War of Independence and Civil War. Key sources for this study included personal papers of both the establishment and military figures, IRA witness statements, local and national newspapers, the 1901 and 1911 Irish Censuses, Colonial Office Papers, compensation claims filed with the British government and Irish Free State, and others from archives throughout Ireland and the United Kingdom.
Resumo:
Isocyanates are included into a class with an extreme commercial importance because their use in the manufacture of polyurethanes. Polyurethanes are used in several applications such as adhesives, coatings, foams, thermoplastics resins, printing inks, foundry moulds and rubbers. Agglomerated cork stoppers are currently used for still wines, semi-sparkle and gaseous wines, beer and cider. Methylene diphenyl diisocyanate (MDI) is presently the isocyanate used in the production of polyurethane based adhesive in use due to its lowest toxicity comparing with toluene diisocyanate (TDI) previously employed. However, free monomeric TDI or MDI, depending on the based polyurethane, can migrate from agglomerated cork stoppers to beverages therefore it needs to be under control. The presence of these compounds are usually investigated by HPLC with Fluorescence or UV-Vis detector depending on the derivatising agent. Ultra Performance Liquid Chromatography with Diode Array Detector (UPLC-DAD) method is replacing HPLC. The objective of this study is to determine which method is better to analyze isocyanates from agglomerated cork stoppers, essentially TDI to quantify its monomer. A Design of Experiments (DOE) with three factors, column temperature, flow and solvent, at two levels was done. Eight experiments with three replications and two repetitions were developed. Through an ANOVA the significance of the factors was evaluated and the best level’s factors were selected. As the TDI has two isomers and in this method these two isomers were not always separated an ANOVA with results of resolution between peaks was performed. The Design of Experiments reveals to be a suitable statistical tool to determine the best conditions to quantified free isocyanates from agglomerated cork stoppers to real foodstuff. The best level’s factors to maximize area was column temperature at 30ºC, flow to 0,3 mL/min and solvent 0,1% Ammonium Acetate, to maximize resolution was the same except the solvent that was 0,01% Ammonium Acetate.
Resumo:
Cork boiling water is an aqueous and complex dark liquor with high concentration of phenolic compounds such as phenolic acids and tannins [1, 2], which are considered biorecalcitrants [2]. Ionizing radiation has been widely studied as an alternative technology for the degradation of organic contaminants without the addition of any other (e.g.: Fenton technologies). The aim of this work was to identify the compounds present in cork boiling water and further evaluate the resulting stable degradation products after gamma irradiation. The irradiation experiments of standard solutions were carried out at room temperature using a Co-60 experimental equipment. The applied absorbed doses were 20 and 50 kGy at a dose rate of 1.5 kGy/h, determined by routine dosimeters [3]. The identification of radiolytic products was carried out by HPLC-DAD-ESI/MS. The phenolic compounds were identified by comparing their retention times and UV–vis and mass spectra with those obtained from standard compounds, when available, as well as by comparing the obtained information with available data reported in the literature. Concerning the obtained results and the literature review, the main cork wastewater components are: quinic, gallic, protocatechuic, vanillic, syringic and ellagic acids. Based on this, we used protocatechuic, vanillic and syringic acids as model compounds to study their degradation by gamma radiation in order to identify the corresponding radiolytic products. Standard aqueous solutions were irradiated and the derivatives of each model compound are represented in figure 1. The obtained results seem to demonstrate that the derivatives of the parent compounds could also be phenolic acids, since it was observed the loss of 44 u (CO2) from the [M-H]- ions. Gallic and protocatechuic acids are identified as derivatives of vanillic and syringic acids, and gallic acid as a protocatechuic acid derivative. Compound 5 ([M-H]- at m/z 169) was tentatively identified as 2,4,6-trihydroxybenzoic acid, since its fragmentation pattern (m/z 151, 125 and 107) is similar to that previously reported in literature [4]. The structure of compound 7 was proposed based on the molecular ion and its fragmentation and compound 6 remains unknown.
Resumo:
Estate studies in Irish historical geography have been often designed to confirm or contrast local trends of development with those previously identified at the regional or sub-regional level. To date, little attention has been awarded to estate maps in studies of rural landscape change. It is a theme of this paper that the results yielded from a careful study of such estate maps can throw light on the results of the activities of the majority of estate residents. In this regard, it is fortunate that at Lismore surveys of the estate in 1716–17 and 1773–4 have survived, and a nineteenth century dimension is added by an analysis of the Valuation Office maps for 1851. This work is focused on a study of critical indicators of change, notably leasing arrangements, farm size, rate and type of enclosure, infrastructural development and settlement growth. These changes are reviewed within the framework of the dialectic that developed between landlord or landlord-inspired management policies and the forces released locally by the vast bulk of the population. Broadly this analysis indicates some of the potential rewards which may be secured by detailed scrutiny of estate maps in conjunction with other estate records.
Resumo:
Bacillus safensis is a microorganism recognized for its biotechnological and industrial potential due to its interesting enzymatic portfolio. Here, as a means of gathering information about the importance of this species in oil biodegradation, we report a draft genome sequence of a strain isolated from petroleum.
Resumo:
Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
Resumo:
Chlorocatechol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida (Pp 1,2-CCD) is considered to be an important biotechnological tool owing to its ability to process a broad spectrum of organic pollutants. In the current work, the crystallization, crystallographic characterization and phasing of the recombinant Pp 1,2-CCD enzyme are described. Reddish-brown crystals were obtained in the presence of polyethylene glycol and magnesium acetate by utilizing the vapour-diffusion technique in sitting drops. Crystal dehydration was the key step in obtaining data sets, which were collected on the D03B-MX2 beamline at the CNPEM/MCT - LNLS using a MAR CCD detector. Pp 1,2-CCD crystals belonged to space group P6(1)22 and the crystallographic structure of Pp 1,2-CCD has been solved by the MR-SAD technique using Fe atoms as scattering centres and the coordinates of 3-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus (PDB entry
Resumo:
Studies on keratinolytic microorganisms have been mainly related to their biotechnological applications and association with animal pathologies. However, these organisms have an ecological relevance to recycling keratinous residues in nature. This work aimed to select and identify new culturable feather-degrading bacteria isolated from soils of Brazilian Amazon forest and Atlantic forest. Bacteria that were isolated from temperate soils and bacteria from Amazonian basin soil were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified according to their morphological and biochemical characteristics. Also, molecular identification based on 165 rDNA gene sequencing was carried out. A total of 24 proteolytic and 20 feather-degrading isolates were selected; Most of the isolates were from the Bacillus genus (division Firmicutes), but one Aeromonas, two Serratia (gamma-Proteobacteria), and one Chryseobacterium (Cytophaga-Flavobacterium group). (C) 2010 Elsevier Ltd. All rights reserved.