651 resultados para BENZENE
Resumo:
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.
Resumo:
A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009
Resumo:
The rates of oximolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) by Acetophenoxime; 10-phenyl-10-hydi-oxyiminodecanoic acid; 4-(9-carboxynonanyl)-1-(9-carboxy-1-hydroyiminononanyl) benzene; 1-dodecyl-2-[(hydroxyimino)methyl]-pyridinium chloride (IV) and N-methylpyridinium-2-aldoxime chloride were determined in micelles of N-hexadecyl-N,N,N-trimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethylammonium propanesulfonate and dioctadecyldimethylammonium chloride (DODAC) vesicles. The effects of CTAC micelles and DODAC vesicles on the rates of oxymolysis of O,O-Diethyl O-(4-nitrophenyl) phosphate (paraoxon) by oxime IV were also determined. Analysis of micellar and vesicular effects on oximolysis of PNPDPP, using pseudophase or pseudophase with explicit consideration of ion exchange models, required the determination of the aggregate`s effects on the pK(a), of oximes and on the rates of PNPDPP hydrolysis. All aggregates increased the rate of oximolysis of PNPDPP and the results were analyzed quantitatively. In particular, DODAC vesicles catalyzed the reaction and increased the rate of oximolysis of PNPDPP by IV several million fold at pH`s compatible with pharmaceutical formulations. The rate increase produced by DODAC vesicles on the rate of oximolysis paraoxon by IV demonstrates the pharmaceutical potential of this system, since the substrate is used as an agricultural defensive agent and the surfactant is extensively employed in cosmetic formulations. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1040-1052, 2009
Resumo:
The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010
Resumo:
The hydrogenation of benzene and benzene derivatives was studied using Ru(0) nanoparticles prepared by a very simple method based on the in situ reduction of the commercially available precursor ruthenium dioxide under mild conditions (75 degrees C and hydrogen pressure 4atm) in imidazolium ionic liquids. Total turnovers (TTO) of 2700 mol/mol Ru were obtained for the conversion of benzene to cyclohexane under solventless conditions and TTO of 1200 mol/mol Ru were observed under ionic liquid biphasic conditions. When corrected for exposed ruthenium atoms, TTO values of 7940 (solventless) and 3530 (biphasic) were calculated for benzene hydrogenation. These reaction rates are higher than those observed for Ru nanoparticles prepared from decomposition of an organometallic precursor in similar conditions. The presence of the partially hydrogenated product cyclohexene was also detected at low conversion rates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study describes the antichagasic potential of five compounds isolated from leaves of Piper crassinervium (Piperaceae). Two prenylated benzoic acid derivatives, one prenylated hydroquinone and two flavanones, were evaluated. The in vitro trypanocidal activity was determined against epimastigote forms of Trypanosoma cruzi (Y strain), the etiologic agent of Chagas disease. The most active compound was the prenylated hydroquinone [1,4-dihydroxy-2-(3(0),7(0)-dimethyl-1(0)-oxo-2(0)-E,6(0)-octadienyl)benzene] with an IC(50) value of 6.10 g mL(-1), which was in the same order of activity if compared with the positive control benznidazole (IC(50) = 1.60 mu g mL(-1)). This is the first report of trypanocidal activity for prenylated hydroquinone and benzoic acid derivatives.
Resumo:
Tetrahydrofuran derivatives can be obtained by cyclo-functionalization of homoallylic alcohols bearing a terminal double bound by using [hydroxy(tosyloxy)iodo]benzene (HTIB, Koser`s reagent) in the presence of a catalytic amount of 12 (20 mol %) in MeOH under mild conditions. This transformation is an overall 5-endo-trig cyclization, which occurs by two different pathways. The first is a 4-exo-trig cyclization followed by ring expansion, whereas the second is an electrophilic addition followed by a 5-endo-tet cyclization.
Resumo:
The question raised in the title has been answered by comparing the solvatochromism of two series of polarity probes, the lipophilicities of which were increased either by increasing the length of an alkyl group (R) attached to a fixed pyridine-based structure or through annelation (i.e., by fusing benzene rings onto a central pyridine-based structure). The following novel solvatochromic probes were synthesized: 2,6-dibromo-4-[(E)-2-(1-methylquinolinium-4-yl)ethenyl]-phenolate (MeQMBr(2)) and 2,6-dibromo-4-[(E)-2-(1-methyl-acridinium-4- yl) ethenyl)]phenolate (MeAMBr(2) The solvatochromic behavior of these probes, along with that of 2,6dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl]phenol-ate(MePMBr(2)) was analyzed in terms of increasing probe lipophilicity, through annelation. Values of the empirical solvent polarity scale [E(T)(MePMBr(2))] in kcalmol(-1) correlated linearly with ET(30), the corresponding values for the extensively employed probe 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (RB). On the other hand, the nonlinear correlations of ET(MeQMBr(2)) or ET(MeAMBr(2)) with E(T)(30) are described by second-order polynomials. Possible reasons for this behavior include: i) self-aggregation of the probe, ii) photoinduced cis/trans isomerization of the dye, and iii) probe structure- and solvent-dependent contributions of the quinonoid and zwitterionic limiting formulas to the ground and excited states of the probe. We show that mechanisms (i) and (ii) are not operative under the experimental conditions employed; experimental evidence (NMR) and theoretical calculations are presented to support the conjecture that the length of the central ethenylic bond in the dye increases in the order MeAMBr(2) > MeQMBr(2) > MePMBr(2), That is, the contribution of the zwitterionic limiting formula predominates for the latter probe, as is also the case for RB, this being the reason for the observed linear correlation between the ET(MePMBr2) and the ET(30) scales. The effect of increasing probe lipophilicity on solvatochromic behavior therefore depends on the strategy employed. Increasing the length of R affects solvatochromism much less than annelation, because the former structural change hardly perturbs the energy of the intramolecular charge-transfer transition responsible for solvatochromism. The thermo-solvatochromic behavior (effect of temperature on solvatochromism) of the three probes was studied in mixtures of water with propanol and/or with DMSO. The solvation model used explicitly considers the presence of three ""species"" in the system: bulk solution and probe solvation shell [namely, water (W), organic solvent (Solv)], and solvent-water hydrogen-bonded aggregate (Solv-W). For aqueous propanol, the probe is efficiently solvated by Solv-W; the strong interaction of DMSO with W drastically decreases the efficiency of Solv-W in solvating the probe, relative to its precursor solvents. Temperature increases resulted in desolvation of the probes, due to the concomitant reduction in the structured characters of the components of the binary mixtures.
Resumo:
Calixarenesare macrocycles composed of benzene rings meta linked to each other by one carbon atom. These exotic compounds can be used for a variety of purposes including metalleaching for environmental cleanup, surface technology, luminescent probes, nuclear waste treatment, among others. A variety of calixarenesexist, including azacalix[n]arenesthiocalix[n]arenes(where n = the number of benzene rings) and oxacalix[n]arenes; these macrocycles use nitrogen, sulfur and oxygen, respectively, as the atom whichlinks the benzene rings together. My research has focused on synthesizing oxacalix[6]arenes (“hexamer”) in high yield, which is a synthetic challenge because it is generally accepted that oxacalix[n>4]arenes will thermodynamically decompose to the oxacalix[4]arene (“tetramer”); i.e. heating the reaction mixture will yield the tetramer, not the hexamer. To generate the hexamer, “trimer”precursors have been synthesized, in the hopes of facilitating hexamer ring closure.
Resumo:
A Mg e Mn-Ftalocianina (Mg e Mn-Pc) foram solubilizados à 25°C em dimetilsulfóxido (DMSO); N, N-dimetilacetamida (DMA); N,N-dimetilformamida (DMF); N-metil-formamida, formamida, piridina, o-diclorobenzeno, monoclorobenzeno, tolueno, metanol, etanol, propanol-1, propanol-2, butanol-1 e octanol-1. Alguns valores representativos obtidos para o logarítimo da absortividade molar (E) da Mn-Pc, são os seguintes: o-diclorobenzeno (E = 4,94); DMSO (E = 4,39); octanol-1 (E = 3,90). Valores correspondentes para Mg-Pc são: o-diclarobenzeno (E = 4,93); DMSO (E = 5,22) e Octanol-1 ( E = 5,06). Em função de interação com solventes, pode-se classificar a Mg-Pc como um indicador básico e a Mn-Pc como indicador ácido. Os pigmentos Mg e Mn-Pc foram também solubillzados em soluções aquosas contendo vários surfatantes à 25°C. A Mg-Pc apresentou solubilidade significativa em água contendo brometo de cetiltrimetilamônio (CTAB), Brij-35, cloreto de cetilpiridinio (CPC1), brometo de cetilpiridínio (CPBr,) Triton X-100, cloreto de metildodecilbenziltrimetilamônio, brometo de cetildimetiletilamõnio e brometo de laurilisoquinolínio. A Mn-Pc foi solúvel em soluções aquosas de Brij-35 e Triton X-100. Em função de sua interação com surfatantes a Mg-Pc é classificada como corante catiônico e a Mn-Pc como corante aniônico. O corante comercial quinóide Oil Blue A [1,4-di(isopropilarnina)-antraquinona - 9,10 foi solubilizado à 25°C em DMF, DMSO, DMA, monoclorobenzeno, benzeno, tolueno, piridina, metanol, etanol, propanol-1, propanol-2, butanol-1 e octanol-1. Foi também solubilizado em soluções aquosas de surfatantes, tais como sódio lauril-sulfato (NaLS), cloreto de cetiltrimetilamônio (CTAB), brometo de cetildimetiletilamônio, Triton X-100, cloreto de cetilpiridínio (CPCl), Brij-35, cloreto de rnetildodecilbenziltrimetilamônio e brometo de laurilisoquinolínio. Em função de suas interações com os solventes o corante é um indicador ácido-básico pouco sensível e em função de sua interação com surfatantes é um corante catiônico. 0s resultados experimentais apresentam importância teórica e prática considerando sistemas que envolvem armazenamento e transferência de energia, compostos porfirínicos, fotossíntese, fotocondutores, coletores solares, semi-condutores e processos de embelezamento e proteção de superficies de vários materiais.
Resumo:
BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.
Resumo:
Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary
Resumo:
Among the different types of pollutants typically attributed to human activities, the petroleum products are one of the most important because of its toxic potential. This toxicity is attributed to the presence of substances such as benzene and its derivatives are very toxic to the central nervous system of man, with chronic toxicity, even in small concentrations. The area chosen for study was the city of Natal, capital of Rio Grande do Norte, where samples were collected in six different areas in the city, comprising 10 wells located in the urban area, being carried out in three distinct periods March/2009, December / June/2010 and 2009, and were evaluated for contamination by volatile hydrocarbons (BTEX - benzene, toluene, ethylbenzene and xylenes), so this work aimed to assess the quality of groundwater wells that supply funding for public supply and trade in the urban area of the city of Natal, in Rio Grande do Norte, contributing to the environmental assessment of the municipality. The analysis of BTEX in water was performed according to EPA Method 8021b. Was used the technique of headspace (TriPlus TP100) coupled to high resolution gas chromatography with selective photoionization detector (PID) and flame ionization (FID) - model Trace GC Ultra, Thermo Electron Corporation brand. The procedure adopted allowed the detection of concentrations of the order of μg.L-1. Data analysis with respect to BTEX in groundwater in the area monitored so far, shows that water quality is still preserved, because it exceeds the limits imposed by the potability Resolution CONAMA Nº. 396, April 2008