982 resultados para Assembling magazine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromatoid body (CB) is a typical cytoplasmic organelle of germ cells, and it seems to be involved in RNA/protein accumulation for later germ-cell differentiation. Despite most of the events in mammals spermatogenesis had been widely described in the past decades and the increase in the studies related to the CB molecular composition and physiology, the origins and functions of this important structure of male germ cells are still unclear. The aims of this study were to describe the nucleolar cycle and also to find some relationship between the nucleolar organization and the CB assembling during the spermatogenesis in mammals. Cytochemical and cytogenetics analysis showed nucleolar fragmentation in post-pachytene spermatocytes and nucleolar reorganization in post-meiotic spermatids. Significant difference in the number and in the size of nucleoli between spermatogonia and round spermatids, as well as differences in the nucleolar position within the nucleus were also observed. Ultrastructural analysis showed the CB assembling in the cytoplasm of primary spermatocytes and the nucleolar fragmentation occurring at the same time. In conclusion our results suggest that the CB may play important roles during the spermatogenesis process in mammals and that its origin may be related to the nucleolar cycle during the meiotic cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in tissue-engineered cartilage open the door to new clinical treatments of joint lesions. Common to all therapies with in-vitro-engineered autografts is the need for optimal fit of the construct to allow screwless implantation and optimal integration into the live joint. Computer-assisted surgery (CAS) techniques are prime candidates to ensure the required accuracy, while at the same time simplifying the procedure. A pilot study has been conducted aiming at assembling a new set of methods to support ankle joint arthroplasty using bioengineered autografts. Computer assistance allows planning of the implant shape on a computed tomography (CT) image, manufacturing the construct according to the plan, and interoperatively navigating the surgical tools for implantation. A rotational symmetric model of the joint surface was used to avoid segmentation of the CT image; new software was developed to determine the joint axis and make the implant shape parameterizable. A complete cycle of treatment from planning to operation was conducted on a human cadaveric foot, thus proving the feasibility of computer-assisted arthroplasty using bioengineered autografts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain fatty acid N-alkyl amides from the medicinal plant Echinacea activate cannabinoid type-2 (CB2) receptors. In this study we show that the CB2-binding Echinacea constituents dodeca-2E,4E-dienoic acid isobutylamide (1) and dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (2) form micelles in aqueous medium. In contrast, micelle formation is not observed for undeca-2E-ene-8,10-diynoic acid isobutylamide (3), which does not bind to CB2, or structurally related endogenous cannabinoids, such as arachidonoyl ethanolamine (anandamide). The critical micelle concentration (CMC) range of 1 and 2 was determined by fluorescence spectroscopy as 200-300 and 7400-10000 nM, respectively. The size of premicelle aggregates, micelles, and supermicelles was studied by dynamic light scattering. Microscopy images show that compound 1, but not 2, forms globular and rod-like supermicelles with radii of approximately 75 nm. The self-assembling N-alkyl amides partition between themselves and the CB2 receptor, and aggregation of N-alkyl amides thus determines their in vitro pharmacological effects. Molecular mechanics by Monte Carlo simulations of the aggregation process support the experimental data, suggesting that both 1 and 2 can readily aggregate into premicelles, but only 1 spontaneously assembles into larger aggregates. These findings have important implications for biological studies with this class of compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular, porous crystalline material constructed from neutral helical coordination polymers incorporating manganese(II) ions and two types of bridging ligands, namely the deprotonated form of 2-hydroxy-5-methoxy-3-nitrobenzaldehyde (HL) and isobutyrate (iB−), has been obtained and structurally characterized. Structural analysis reveals that within the coordination polymer each benzaldehyde derivative ligates two manganese ions in 6-membered chelating rings, and the isobutyrate ligands cooperatively chelate either two or three manganese ions. The solid state assembly of the resulting polymeric chains of formula [Mn4(L)2(iB)6]n (1), described in the polar space group R3c, is associated with tubular channels occupied by MeCN solvent molecules (1·xMeCN; x ≤ 9). TGA profiles and PXRD measurements demonstrate that the crystallinity of the solid remains intact in its fully desolvated form, and its stability and crystallinity are ensured up to a temperature of 190 °C. Gas adsorption properties of desolvated crystals were probed, but no remarkable sorption capacity of N2 and only a limited one for CO2 could be observed. Magnetic susceptibility data reveal an antiferromagnetic type of coupling between adjacent manganese(II) ions along the helical chains with energy parameters J1 = −5.9(6) cm−1 and J2 = −1.8(9) cm−1.

Relevância:

20.00% 20.00%

Publicador: