996 resultados para Alummium-silicon Alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures are widely used for many applications and hence there have been several efforts directed towards their synthesis. While several template-based and template-less approaches are available for monometallic systems, there is no general method for the synthesis of nanoporous multicomponent systems/alloys. We present a general template-less strategy for the synthesis of nanoporous alloy aggregates by controlled aggregation of nanoparticles in the solution phase with excellent control over morphology and composition as illustrated using AuPt, AuPd, PdPt and PtRu systems as examples. The Pt-based nanoporous clusters exhibit excellent activity for methanol oxidation with good long-term stability and CO tolerance. We show that the method can be extended to produce ternary catalysts and hence we expect our method to be widely used for the synthesis of multifunctional nanoporous structures for catalysis, sensor and drug-delivery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilization of nanocrystalline grain sizes by second phase particles can facilitate superplasticity at high strain rates and/or low temperatures. A metastable single phase nano-Ni-P alloy prepared by electrodeposition, with a grain size of similar to 6 nm, transforms to a nanoduplex structure at T> 673 K, with similar to 4 vol.% Ni3P particles at triple junctions and within Ni grains. The nanoduplex microstructure is reasonably stable up to 777 K, and the growth of Ni grains occurs in a coupled manner with the growth of Ni3P particles such that the ratio of the two mean sizes (Z) is essentially constant. High temperature tests for a grain size of 290 nm reveal superplastic behavior with an optimum elongation to failure of 810% at a strain rate of 7 x 10(-4) s(-1) and a relatively low temperature of 777 K. Superplastic deformation enhances both grain growth and the ratio Z, implying that grain boundary sliding (GBS) significantly influences the microstructural dynamics. Analysis of the deformation processes suggests that superplasticity is associated with GBS controlled by the overcoming of intragranular particles by dislocations, so that deformation is independent of the grain size. The nano-Ni-P alloy exhibits lower ductility than nano-Ni due to concurrent cavitation caused by higher stresses. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unstable flow during hot deformation of an alpha(2) titanium aluminide alloy Ti-24Al-20Nb alloy was analysed using two criteria, one of which was developed by Jonas and the other by Kalyankumar. Workability maps were constructed using the alpha parameter as suggested by Semiatin and Lahoti and instability maps were constructed based on the stability parameter xi(epsilon) as suggested by Kalyankumar. Microstructural study was carried out on deformed specimens to validate the two criteria. The results of the two criteria were compared. The particular case of highly negative alpha values has been discussed in detail and it is shown that these correspond to regions of unstable flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical approach for coupling the temperature and concentration fields using a micro/macro dual scale model for a solidification problem is presented. The dual scale modeling framework is implemented on a hybrid explicit-implicit solidification scheme. The advantage of this model lies in more accurate consideration of microsegregation occurring at micro-scale using a subgrid model. The model is applied to the case of solidification of a Pb-40% Sn alloy in a rectangular cavity. The present simulation results are compared with the corresponding experimental results reported in the literature, showing improvement in macrosegregation predictions. Subsequently, a comparison of macrosegregation prediction between the results of the present method with those of a parameter model is performed, showing similar trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular alloys of Cu with FeCo were prepared by the melt-spinning technique. The alloy was characterized by x-ray, transmission electron microscopy, vibrating sample magnetometer, and magnetoresistance measurements. The alloys were heat treated for different temperatures to optimize the magnetoresistance properties. Structural characterization reveals that the FeCo phase initially precipitates out as fcc and later transforms to the bcc structure by martensitic transformation. It is seen that the trend in the magnetoresistance properties is different for the measurements carried out at room temperature and 4.2 K. This has been attributed to the transformation of fine fcc precipitates to the bcc structure during the low temperature measurements. It is seen that the presence of fine particles causes an increase in the field for saturation and is not suitable for applications where moderate field giant magnetoresistance is required. (C) 1999 American Institute of Physics. [S0021-8979(99)08317-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification techniques can be used to produce the embedded nanoparticles in a desired matrix. The origin and morphology of these small particles and their transformation behaviour are still not fully understood. In this paper, we discuss the issues involved and present some interesting results in Al-Pb-In and Cu-Fe-Si systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt was made to study the deep level impurities and defects introduced into thyristor grade silicon under different processing conditions. DLTS, C-V and I-V measurements were carried out. The ideality factors of the diodes is around 1-7. Activation energy, trap density and minority carrier lifetime were measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passing a H-2-CH4 mixture over oxide spinels containing two transition elements as in Mg0.8MyMz'Al2O4 (M, M' = Fe, Co or Ni, y + z = 0.2) at 1070 degrees C produces small alloy nanoparticles which enable the formation of carbon nanotubes. Surface area measurements are found to be useful for assessing the yield and quality of the nanotubes. Good-quality single-walled nanotubes (SWNTs) have been obtained in high yields with the FeCo alloy nanoparticles, as evidenced by transmission electron microscope images and surface area measurements. The diameter of the SWNTs is in the 0.8-5 nm range, and the multiwalled nanotubes, found occasionally, possess very few graphite layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Properties of cast aluminium matrix composites are greatly influenced by the nature of distribution of reinforcing phase in the matrix and matrix microstructural length scales, such as grain size, dendrite arm spacing, size and morphology of secondary matrix phases, etc. Earlier workers have shown that SIC reinforcements can act as heterogeneous nucleation sites for Si during solidification of Al-Si-SiC composites. The present study aims at a quantitative understanding of the effect of SiC reinforcements on secondary matrix phases, namely eutectic Si, during solidification of A356 Al-SiC composites. Effect of volume fraction of SiC particulate on size and shape of eutectic Si has been studied at different cooling rates. Results indicate that an increase in SiC volume fraction leads to a reduction in the size of eutectic Si and also changes its morphology from needle-like to equiaxed. This is attributed to the heterogeneous nucleation of eutectic Si on SiC particles. However, SiC particles are found to have negligible influence on DAS. Under all the solidification conditions studied in the present investigation, SiC particles are found to be rejected by the growing dendrites. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radially homogeneous bulk alloys of GaxIn1-xSb in the range 0.7 < x < 0.8, have been grown by vertical Bridgman technique. The factors affecting the interface shape during the growth were optimised to achieve zero convexity. From a series of experiments, a critical ratio of the temperature gradient (G) of the furnace at the melting point of the melt composition to the ampoule lowering speed (v) was deduced for attaining the planarity of the melt-solid interface. The studies carried out on directional solidification of Ga0.77In0.23Sb mixed crystals employing planar melt-solid interface exhibited superior quality than those with nonplanar interfaces. The solutions to certain problems encountered during the synthesis and growth of the compound were discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanol-tolerant Pt-Pd alloy catalysts supported on to carbon with varying Pt:Pd atomic ratios of 1:1, 2:1 and 3:1 are prepared by a novel wet-chemical method and characterized using powder XRD, XPS, FESEM, EDAX and TEM techniques. The optimum atomic weight ratio for Pt to Pd in the carbon-supported alloy catalyst as established by linear-sweep voltammetry (LSV) and cell polarization studies is found to be 2:1. A direct methanol fuel cell (DMFC) employing carbon-supported Pt-Pd (2:1) alloy (Pt-Pd/C) catalyst as the cathode catalyst delivers a peak-power density of 115 mW/cm(2) at 70 degrees C as compared to peak-power density of 60 mW/cm(2) obtained with the DMFC employing carbon-supported Pt (Pt/C) catalyst operating under similar conditions. In the literature, DMFCs operating with Pt-TiO2 (2:1)/C and Pt-Au (2:1)/C methanol-tolerant cathodes are reported to exhibit maximum ORR activity among the group of these methanol-tolerant cathodes with varying catalysts compositions. Accordingly, the present study also provides an effective route to design methanol-tolerant-oxygen-reduction catalysts for DMFCs. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3596542] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracer diffusion coefficients are calculated in different phases in the Mo-Si system from diffusion couple experiments using the data available on thermodynamic parameters. Following, possible atomic diffusion mechanism of the species is discussed based on the crystal structure. Unusual diffusion behaviour is found in the Mo(5)Si(3) and Mo(3)Si phases, which indicate the nature of defects present on different sublattices. Further the growth mechanism of the phases is discussed and morphological evolution during interdiffusion is explained. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation of a primitive icosahedral quasicrystal with increased stability in Al Mn-Be alloys close to the compound Al15Mn13Be2, by melt spinning and injection casting. The crystal structure of this compound was unknown. We show that in as-cast as well as heat treated condition the intermetallic phase H1 has a hexagonal structure with lattice parameters a = 1.2295 run and c = 2.4634 nm. The space group is P6(3)/mmc In the injection-cast samples, the quasicrystal coexists with another closely related hexagonal phase H2 with a = 1.2295 nm and c = 1.2317 nm with a possible space group of P6/mmm. This phase exhibits specific orientation relationships with the icosahedral quasicrystal given by [0001](hex)//2f(QC) and [01 (1) over bar0](hex)//5f(QC) where 2f(QC) and 5f(QC) represent twofold and fivefold axes respectively. Electron diffraction patterns from both phases exhibit a close resemblance to the quasicrystalline phase. It is shown that the H1 phase is closely related to mu-Al4Mn with the same e parameter while the a parameter is reduced by tau. Following Kreiner and Franzen, it is postulated that both structures (H1 and H2) can be understood by a simple hexagonal packing of I13 clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.